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Learning goals for today

At the end of class, you will be able to:

1. Explain how discontinuities can be exploited for causal
identification

2. Understand bias variance trade-off in selecting bandwiths
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What is the effect of a certificate?

▶ Thistlewaite and Campbell (1960) are interested in measuring
causal effect of winning a scholarship

▶ High school students take Scholarship Qualifying Test (SQT)

▶ Each state has a specific threshold for score

▶ Students who score above a state specific threshold get
Certificate of Merit

▶ Students who score well, but below the threshold get letter of
commendation

▶ Data contains 5,126 Certificate of Merit winners and 2,848
letters of commendation winners
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What is the effect of a certificate?

▶ CoM winners got ≈ 2.5x recognition, published in lists, etc.

▶ 6 Months after awards, survey is sent out
▶ Other scholarships won
▶ Planning to pursue PhD or MD
▶ Attitude towards intellectualism

What is the causal effect of the CoM on various
attributes?
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What is the effect of a scholarship?

SQT CoM Other Scholarships
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What is the effect of a scholarship?

Figure: Caption
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Figure: Caption
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Overlap assumption

▶ Conditioning on SQT score yields conditional exchangeability
▶ Try to apply previous methods:

▶ Standardization:

E(Y a=1) =
∑
s

E(Y | Score = s,A = 1)P(Score = s)

E(Y a=0) =
∑
s

E(Y | Score = s,A = 0)P(Score = s)

▶ Matching:
Match each person who received Certificate of Merit with a
“similar” person who received Letter of Recommendation

▶ In both cases, P(CoM = 1 | Score) = 0 for some scores
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Local average treatment effect

▶ No overlap implies we can’t directly estimate ATE without
strong assumptions

▶ Let’s aim for an easier target

▶ Average Treatment effect for individuals at the cut-off

Local ATE = E(Y a=1
i | Score = c)− E(Y a=0

i | Score = c0)

▶ Does not tell us about treatment effect for everyone!
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The big idea

▶ Treatment of interest depends only on whether a running
variable is above or below a threshold c
CoM only depends on above or below score threshold

▶ Assume E(Y a=1 | R = r) and E(Y a=0 | R = r) varies
smoothly
The average potential outcomes for score = 99.9 is very close to

the average for score = 100.1

▶ Above the the cut-off E(Y a=1 | R = r) = E(Y | R = r)

▶ Below the the cut-off E(Y a=0 | R = r) = E(Y | R = r)

▶ Using observed data, estimate, E(Y | R = r) for r closer and
closer to the cut-off

▶ Estimate local ATE E(Y a=1
i | Ri = c)− E(Y a=0

i | Xi = c) by

limx→c+E(Y | X = x)︸ ︷︷ ︸
from above the cut-off

− lim
x→c−

E(Y | X = x)︸ ︷︷ ︸
from below the cut-off
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Local average treatment effect
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Alternative intuition

▶ Within a small neighborhood of the cut-off, people are more
or less the same

▶ Ending up above or below the threshold is more or less chance
Scoring 100.1 vs 99.9 is essentially random

▶ Conditional exchangeability holds for people very close to the
cut-off

▶ Conditional exchangeability does not hold for people further
from the cut-off

12 / 17



Alternative intuition

▶ Within a small neighborhood of the cut-off, people are more
or less the same

▶ Ending up above or below the threshold is more or less chance
Scoring 100.1 vs 99.9 is essentially random

▶ Conditional exchangeability holds for people very close to the
cut-off

▶ Conditional exchangeability does not hold for people further
from the cut-off

12 / 17



Alternative intuition

▶ Within a small neighborhood of the cut-off, people are more
or less the same

▶ Ending up above or below the threshold is more or less chance
Scoring 100.1 vs 99.9 is essentially random

▶ Conditional exchangeability holds for people very close to the
cut-off

▶ Conditional exchangeability does not hold for people further
from the cut-off

12 / 17



Alternative intuition

▶ Within a small neighborhood of the cut-off, people are more
or less the same

▶ Ending up above or below the threshold is more or less chance
Scoring 100.1 vs 99.9 is essentially random

▶ Conditional exchangeability holds for people very close to the
cut-off

▶ Conditional exchangeability does not hold for people further
from the cut-off

12 / 17



Discontinuities in the wild

Discontinuities turn up in lots of places...

▶ in flagship state program which requires certain test score

▶ Government benefits which require means testing

▶ Healthcare decisions based on diagnostic test

▶ ...
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Non-linear settings

What if E (Y a=1 | X ) is non-linear?
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Non-linear settings
How do we choose the bandwidth?
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▶ Bias: how far off of the truth in infinite data?
▶ Variance: how much would my estimate change in new

sample?
▶ Roughly speaking, bandwidth should be smaller when your

data set is larger
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Regression discontinuity

Pros:

▶ Very few assumptions required

▶ Plausible in many real applications

Cons:

▶ Can only estimate local ATE, does not generalize well

▶ Results depend on picking a bandwidth

16 / 17



Regression discontinuity

Pros:

▶ Very few assumptions required

▶ Plausible in many real applications

Cons:

▶ Can only estimate local ATE, does not generalize well

▶ Results depend on picking a bandwidth

16 / 17



Learning goals for today
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