Regression Discontinuity

INFO/STSCI/ILRST 3900: Causal Inference

24 Oct 2023
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Learning goals for today

At the end of class, you will be able to:

1. Explain how discontinuities can be exploited for causal
identification

2. Understand bias variance trade-off in selecting bandwiths
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What is the effect of a certificate?

» Thistlewaite and Campbell (1960) are interested in measuring
causal effect of winning a scholarship

» High school students take Scholarship Qualifying Test (SQT)
» Each state has a specific threshold for score

» Students who score above a state specific threshold get
Certificate of Merit

» Students who score well, but below the threshold get letter of
commendation

» Data contains 5,126 Certificate of Merit winners and 2,848
letters of commendation winners
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What is the effect of a certificate?

» CoM winners got = 2.5x recognition, published in lists, etc.
» 6 Months after awards, survey is sent out

» Other scholarships won
» Planning to pursue PhD or MD
» Attitude towards intellectualism

What is the causal effect of the CoM on various
attributes?
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What is the effect of a scholarship?

SQT CoM ———— Other Scholarships
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What is the effect of a scholarship?
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What is the effect of a scholarship?
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Overlap assumption

» Conditioning on SQT score yields conditional exchangeability
» Try to apply previous methods:
» Standardization:

E(Y*!) = Z E(Y | Score ='s, A= 1)P(Score = s)

E( Ya:O) — Z E(Y | Score = 57A = O)P(Score = 5)

» Matching:
Match each person who received Certificate of Merit with a
“similar” person who received Letter of Recommendation

» In both cases, P(CoM =1 | Score) = 0 for some scores
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Local average treatment effect

» No overlap implies we can’t directly estimate ATE without
strong assumptions

» Let's aim for an easier target
» Average Treatment effect for individuals at the cut-off

Local ATE = E(Y?=! | Score = ¢) — E(Y?7° | Score = )

» Does not tell us about treatment effect for everyone!
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Treatment of interest depends only on whether a running
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The big idea
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Treatment of interest depends only on whether a running
variable is above or below a threshold ¢

CoM only depends on above or below score threshold

Assume E(Y?=1 | R = r) and E(Y?=0 | R = r) varies
smoothly

The average potential outcomes for score = 99.9 is very close to
the average for score = 100.1

Above the the cut-off E(Y*=! | R=r)=E(Y | R =)
Below the the cut-off E(Y?=° |R=r)=E(Y | R =)
Using observed data, estimate, E(Y | R = r) for r closer and
closer to the cut-off

Estimate local ATE E(Y?=! | R = ¢) —E(Y?° | X; = ¢) by
lime ,+E(Y | X =x)— lim E(Y | X =x)
X—C™

from above the cut-off

from belov;rthe cut-off
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Local average treatment effect

o ]
AN .YO
1
"y nl u
o |
2 - "
n
8 gl ™
% - [ ] X
8 8 - h ..
2 ™ 00y ©
G n 0 o070
0 [ 000
T n-n
I‘... o0 ©
090
.80:
o — o 0°
I I I I I I I
-3 -2 -1 0 1 2 3

SQT Score 1117



Local average treatment effect

o _|
N
o0 o
O O
n
= o ©
o
g 0P @
= o o
2 o o
< — ] %)
o o
<
O
n
Ln_
©
oo ©
Op O
8o o
o — o o?©
T T T T T T T
-3 -2 -1 0 1 2 3

SQT Score 1117



Local average treatment effect

20
|

Scholarships
10
l

SQT Score 1117



Local average treatment effect

20
|

Scholarships
10
l

SQT Score 1117



Local average treatment effect

20
|

Scholarships
10
l

SQT Score 1117



Local average treatment effect

20
|

Scholarships
10
l

SQT Score 1117



Local average treatment effect

20
|

Scholarships
10
l

SQT Score 1117



Alternative intuition

» Within a small neighborhood of the cut-off, people are more
or less the same
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Alternative intuition

» Within a small neighborhood of the cut-off, people are more
or less the same

» Ending up above or below the threshold is more or less chance
Scoring 100.1 vs 99.9 is essentially random

» Conditional exchangeability holds for people very close to the
cut-off

» Conditional exchangeability does not hold for people further
from the cut-off
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Discontinuities in the wild

Discontinuities turn up in lots of places...

» in flagship state program which requires certain test score
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Discontinuities in the wild

Discontinuities turn up in lots of places...
» in flagship state program which requires certain test score
» Government benefits which require means testing
» Healthcare decisions based on diagnostic test
> .

13/17



Non-linear settings

What if E(Y?2=! | X) is non-linear?
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Non-linear settings
What if E(Y3=1 | X) is non-linear?
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Non-linear settings
How do we choose the bandwidth?
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» Variance: how much would my estimate change in new
sample?
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Non-linear settings
How do we choose the bandwidth?

bandwidth

oﬁ%% I

» Bias: how far off of the truth in infinite data?

» Variance: how much would my estimate change in new
sample?

» Roughly speaking, bandwidth should be smaller when your
data set is larger
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Regression discontinuity

Pros:

» Very few assumptions required
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Regression discontinuity

Pros:
» Very few assumptions required
» Plausible in many real applications
Cons:
» Can only estimate local ATE, does not generalize well

» Results depend on picking a bandwidth

16/17



Learning goals for today

At the end of class, you will be able to:

1. Explain how discontinuities can be exploited for causal
identification

2. Understand bias variance trade-off in selecting bandwiths
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