
Front door identification

INFO/STSCI/ILRST 3900: Causal Inference
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Logistics

I Problem Set 4 due Oct 19
I Form for final project groups

I Writeup due Nov 21
I Presentations Nov 29
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Quick review: Where we are

I define a causal effect
I treatment, outcome, potential outcomes, target population

I identify a causal effect
I maps a causal quantity (involving counterfactuals)

to a statistical quantity (involving only factual variables)
I DAGs, conditional exchangeability

I estimate a causal effect
I statistical modeling, matching, regression
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Learning goals for today

At the end of class you will be able to

I explain front-door causal identification

More broadly,

1. engage with a new causal identification approach

2. translate that method to code

3. critique the identification assumptions
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1) Engage with a new causal
identification approach
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Sometimes a sufficient adjustment set does not exist

A Y

U
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Imagine you are Taylor Swift’s head of advertising

Does having a ticket for the Eras Tour increase the probability
that a fan look for a future ticket?
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A Y

U

had ticket looking for
new ticket

unmeasured confounding
interest in Taylor Swift, income

As head of advertising, how could you learn about A → Y ?
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3) P(Y a) = P(YMa

)

Proof

P(Y a) = P(YMa

) by (3)

=
∑
m

P(Ma = m)P(Y m) law of total prob.
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∑
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)

Result

P(Y a) =
∑
m

P(M = m | A = a)
∑
a′

P(A = a′)P(Y | M = m,A = a′)

If we intervene
to set treatment
to the value a

then your outcome
is a weighted average
over the M distribution
that would result

of the outcome under M = m,
identified by backdoor adjustment for A
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2) Translate to code
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Translating math to code

P(Y a) =
∑

m P(M = m | A = a)
∑

a′ P(A = a′)P(Y | M = m,A = a′)
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Goal 3) Critique the identification
assumptions
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What edges might need to be added to this DAG?
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