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Learning goals for today

At the end of class, you will be able to
P estimate average causal effects with a parametric model

-,

» for the outcome E(Y | A, L)

-,

» for the treatment P(A | L)

After class:
» Herndn and Robins 2020 Chapter 12.1-12.5, 13, 15.1
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Nonparametric estimation

Causal assumptions

Nonparametric estimator
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For every unit /,
> find units who look like them on confounders L
» who actually got treatment A = a
> take the average among those units

Then average over all units



Nonparametric estimation breaks down
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Nonparametric estimation breaks down
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Parametric estimation: Qutcome model

Causal assumptions

Parametric estimator

1 P
_EZ [—7,A-

First, learn a model to predict Y given Land A
E(Y | LA =a+ L5+ ApB

For every unit /,
» change the treatment value to a
» predict the outcome

Then average over all units
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The parametric g-formula: Connection to B

Estimator for the effect E(Y!) — E(Y?):

E(YY) — E(Y?) = (}72 (&+%,~+B X 1))

i=1
- <i§<&+%+3xo>>
1o~ 4
:n’;ﬁ
~ 5

With OLS, the parametric g-formula collapses on the coefficient.
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The parametric g-formula is more general

Suppose the effect of A depends on L
E(Y|A L =a+~yL+ BA+nAL
Estimator for the effect E(Y?!) — E(Y?):
N N 1< .
E(YH -E(YY) == A+ AL 14+9 x1x4;
(YH) —E(YY) <n2<a+7€+ﬂx + 17 x ><£)>>

i=1
n

— (iZ(A—i—%i-l-BXO—i—’ﬁXOX&))

i=1
-3 (o)

The g-formula no longer collapses to a coefficient!



Parametric g-formula: Outcome model recap

L
|—A—Y

. Model the outcome mean E(Y | A, L)
. Change everyone's treatment to the value of interest

. Predict for everyone

A W NN =

. Take the average

N 1 ~ - o
E(Y)==) E(Y|[=0,A=a)
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Inverse probability of treatment weighting

@ Untreated
@ Treated

Propensity score:

Inverse probability weight:
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Inverse probability of treatment weighting
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Propensity score: m=P(A=A|L=1L)
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Inverse probability of treatment weighting

@® Untreated 1 L=0 | 1 L=1 |
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Propensity score: m=P(A=A|L=1L)

Inverse probability weight: w, =1
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Model the treatment assignment

P(A=1]|L)=logit™ (@
Predict the propensity score for each unit
logit™! (d + ’A?E)
1— logit™! (d + %/’E)

Estimate by inverse probability weighting

A=

n %’E)

if Aj=1
if Ai=0



Learning goals for today

At the end of class, you will be able to
P estimate average causal effects with a parametric model

-,

» for the outcome E(Y | A, L)

-,

» for the treatment P(A | L)

After class:
» Herndn and Robins 2020 Chapter 12.1-12.5, 13, 15.1
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Problem: Extreme weights create high variance

Suppose a stratum L = 7 contains
» 100 untreated units
» 1 treated unit
The treated unit gets a weight of 100.

The estimate depends heavily on which treated unit happens to be
included in the sample — high-variance estimator

Two solutions
1. Trim the weights
2. Truncate the weights

Both solutions accept bias in order to reduce variance



Accepting bias to reduce variance: Trimming
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Accepting bias to reduce variance: Trimming
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Changes target population
— Biased for full population



Accepting bias to reduce variance: Weight truncation
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Accepting bias to reduce variance: Weight truncation
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Accepting bias to reduce variance: Weight truncation
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