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Learning goals for today

At the end of class, you will be able to
I estimate average causal effects with a parametric model

I for the outcome E(Y | A, ~L)
I for the treatment P(A | ~L)

After class:

I Hernán and Robins 2020 Chapter 12.1–12.5, 13, 15.1



Nonparametric estimation

Causal assumptions

~L A Y

Nonparametric estimator

Ê(Y a) =
1

n

n∑
i=1

Ê(Y | ~L = ~̀
i ,A = a)

For every unit i ,

I find units who look like them on confounders ~L

I who actually got treatment A = a

I take the average among those units

Then average over all units
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Nonparametric estimation breaks down
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Parametric estimation: Outcome model
Causal assumptions

~L A Y

Parametric estimator

Ê(Y a) =
1

n

n∑
i=1

Ê(Y | ~L = ~̀
i ,A = a)

First, learn a model to predict Y given ~L and A

Ê(Y | ~L,A) = α̂ + ~L′~̂γ + Aβ̂

For every unit i ,

I change the treatment value to a

I predict the outcome

Then average over all units
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The parametric g-formula: Connection to β̂

Estimator for the effect E(Y 1)− E(Y 0):

Ê(Y 1)− Ê(Y 0) =

(
1

n

n∑
i=1

(
α̂ + γ̂`i + β̂ × 1

))

−

(
1

n

n∑
i=1

(
α̂ + γ̂`i + β̂ × 0

))

=
1

n

n∑
i=1

β̂

= β̂

With OLS, the parametric g-formula collapses on the coefficient.
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The parametric g-formula is more general

Suppose the effect of A depends on L

E(Y | A, L) = α + γL + βA + ηAL

Estimator for the effect E(Y 1)− E(Y 0):

Ê(Y 1)− Ê(Y 0) =

(
1

n

n∑
i=1

(
α̂ + γ̂`i + β̂ × 1 + η̂ × 1× `i )

))

−

(
1

n

n∑
i=1

(
α̂ + γ̂`i + β̂ × 0 + η̂ × 0× `i

))

=
1

n

n∑
i=1

(
β̂ + η̂`i

)
The g-formula no longer collapses to a coefficient!
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Parametric g-formula: Outcome model recap

~L A Y

1. Model the outcome mean E(Y | A, ~L)

2. Change everyone’s treatment to the value of interest

3. Predict for everyone

4. Take the average

Ê(Y a) =
1

n

n∑
i=1

Ê(Y | ~L = ~̀
i ,A = a)
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Inverse probability of treatment weighting
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Model the treatment assignment

P̂(A = 1 | ~L) = logit−1
(
α̂ + ~̂γ~L

)
Predict the propensity score for each unit

π̂i =

logit−1
(
α̂ + ~̂γ~L

)
if Ai = 1

1− logit−1
(
α̂ + ~̂γ~L

)
if Ai = 0

Estimate by inverse probability weighting

Ê(Y a) =
1

N

∑
i :Ai=a

Yi

π̂i



Learning goals for today

At the end of class, you will be able to
I estimate average causal effects with a parametric model

I for the outcome E(Y | A, ~L)
I for the treatment P(A | ~L)

After class:
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Problem: Extreme weights create high variance

Suppose a stratum ~L = ~̀ contains

I 100 untreated units

I 1 treated unit

The treated unit gets a weight of 100.

The estimate depends heavily on which treated unit happens to be
included in the sample → high-variance estimator

Two solutions

1. Trim the weights

2. Truncate the weights

Both solutions accept bias in order to reduce variance
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Accepting bias to reduce variance: Trimming

Marginal

TreatedUntreated

Distribution Within Treatment Values

Marginal Distribution

0.00 0.25 0.50 0.75 1.00

0.0

0.5

1.0

1.5

2.0

2.5

0.0

0.5

1.0

Propensity Score

D
en

si
ty



Accepting bias to reduce variance: Trimming

Marginal

TreatedUntreated

Distribution Within Treatment Values

Marginal Distribution

0.00 0.25 0.50 0.75 1.00

0.0

0.5

1.0

1.5

2.0

2.5

0.0

0.5

1.0

Propensity Score

D
en

si
ty



Accepting bias to reduce variance: Trimming

Marginal

TreatedUntreated

Distribution Within Treatment Values

Marginal Distribution

0.00 0.25 0.50 0.75 1.00

0.0

0.5

1.0

1.5

2.0

2.5

0.0

0.5

1.0

Propensity Score

D
en

si
ty

Drop units with
extreme weights



Accepting bias to reduce variance: Trimming

Drop units with
extreme weights

Marginal

TreatedUntreated

Distribution Within Treatment Values

Marginal Distribution

0.00 0.25 0.50 0.75 1.00

0.0

0.5

1.0

1.5

2.0

2.5

0.0

0.5

1.0

Propensity Score

D
en

si
ty



Accepting bias to reduce variance: Trimming

Drop units with
extreme weights

Marginal

TreatedUntreated

Distribution Within Treatment Values

Marginal Distribution

0.00 0.25 0.50 0.75 1.00

0.0

0.5

1.0

1.5

2.0

2.5

0.0

0.5

1.0

Propensity Score

D
en

si
ty Changes target population

— Biased for full population



Accepting bias to reduce variance: Weight truncation
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Accepting bias to reduce variance: Weight truncation

Truncate values of
extreme weights
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