Inverse Probability Weighting

INFO/STSCI/ILRST 3900: Causal Inference

7 Sep 2023
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Learning goals for today

At the end of class, you will be able to:

1. Estimate the average causal effect using data from a
conditionally randomized experiment using inverse probability
weighting

2. Explain why conditional exchangeability might be reasonable
in some observational data
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Logistics

» Ch 2.4 and 3.2 in Hernan and Robins 2023
» Problem set 2 posted today, due on Sep 14
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Conditional randomization

» Marginal exchangeability: Y2 1L A for all a

» Conditional exchangeability: Y2 I A | L for all a
The potential outcomes are independent of treatment
conditional on L

» Stratification: We can directly estimate causal effect within
each sub-population (or stratum)

» We can estimate the ACE using standardization
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Excercise
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Excercise

L A Y

9  Artemis 1 0 1

L A Y 10 Apollo 1 0 1

1 Rheia 0 0 O 11  Leto 1 0 O
2 Kronos 0o o0 1 12 Ares 1 1 1
3  Demeter 0O 0 O 13 Athena 1 1 1
4  Hades 0 0 O 14 Hephaestus 1 1 1
5 Hestia 0 1 0 15  Aphrodite 1 1 1
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7 Hera 0 1 0 17  Persephone 1 1 1
8 Zeus 0 1 1 18 Hermes 1 1 0
19 Hebe 1 1 0

20 Dionysus 1 1 0

E(Y™H=Pr(L=1)E(Y |L=1,A=1)
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8/20 1/4
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Inverse probability weighting

» Standardization: constructs an estimate of E(Y?) through a
weighted average

» Inverse probability weighted (IPW) estimator is equivalent to
standardization

» Estimator for the ATE

1 Y;
Ey)== S =X
( ) N i';;a i

» 1, =P(A=a; | L=1{;) is the probability of the observed
treatment conditioning on confounders

» N is the total number of observations (over all treatment
groups and confounder groups
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Inverse probability weighting: Conditional randomizaton

@ Untreated
@ Treated

Hypothetical world where no-one is treated
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Inverse probability weighting: Conditional randomizaton

@ Untreated
@ Treated

Hypothetical world where everyone is treated
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Inverse probability weighting: Conditional randomizaton

@ Untreated L=0 L=1
@ Treated
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Inverse probability weighting: Conditional randomizaton
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Inverse probability weighting: Conditional randomizaton

' 7 s 7
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Inverse probability weighting: Conditional randomizaton
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Inverse probability weighting: Conditional randomizaton

@ Untreated
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Inverse probability weighting: Mathematical proof!

'Hernin & Robins Technical Point 2.3
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Inverse probability weighting: Mathematical proof!

E< (A=a) Y) O
PA=a|l)
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Inverse probability weighting: Mathematical proof!

—E(Y?)

'Hernin & Robins Technical Point 2.3

consistency

iterated expectation

exchangeability

()

(3)

(4)
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Inverse probability weighting: Mathematical proof!

'Hernin & Robins Technical Point 2.3

consistency

iterated expectation

exchangeability

since left term was 1

iterated expectation
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Excercise

E(YB)Z%Z,':A,:‘; Yi/mi mi=Pr(Ai=a|L=1{)

Name L A Y

Name L A Y Artemis 1 0 1
Rheia 0 0 0 Apollo 1 0 1
eto 1 0 0

Kronos 0 0 1 Ares 1 01 1
Demeter 0 0 O Athena 1 1 1
Hades 0 0 O Hephaestus 1 1 1
Hestia 0 1 0 Aphrodite 1 1 1
Poseidon 0 1 0 Ec’lyphemus ol
ersephone 1 1 1

Hera 0 1 0 Hermes 1 1 o0
Zeus 0o 1 1 Hebe 1 1 0
Dionysus 1 1 0
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Excercise

E(Y?) = ﬁZi:A,za Yi/mi mi=Pr(A=a; | L=1{;)

Name L A Y

Name L A Y Artemis 1 0 1
Rheia 0 0 0 Apollo 1 0 1
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Demeter 0 0 O Athena 1 1 1
Hades 0 0 O Hephaestus 1 1 1
Hestia 0 1 0 Aphrodite 1 1 1
Poseidon 0 1 0 Ec’lyphemus ol
ersephone 1 1 1

Hera 0 1 0 Hermes 1 1 o0
Zeus 0o 1 1 Hebe 1 1 0
Dionysus 1 1 0
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Conditional exchangeability in observational data

» When conditional exchangeability holds, we can estimate
causal effects from the observed data

» Use either standardization or inverse probability weighting

» By design, conditional exchangeability holds in conditionally
randomized experiments

» Marginal exchangeability is very unlikely in observational data

» Conditional exchangeability is may be more reasonable in
observational data
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Excercise

Suppose we have data gathered by surveying individuals in Fall of
2021
» Whether the individual was vaccinated for Covid
A; = 1 if vaccinated, A; = 0 if not vaccinated
» Whether the individual tested positive for Covid in 2021
Y; = 1 if positive test, Y; = 0 if no positive test
» What additional information could you gather about each

individual to make conditional exchangeability might be
plausible?

ya=l ya=0j AL
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Conditional exchangeability in observational data

» Even if gathering data was possible for every covariate we
want, when do we stop?
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Conditional exchangeability in observational data

» Even if gathering data was possible for every covariate we
want, when do we stop?

» Never 100% sure that conditional exchangeability holds
» |s it reasonable?

P In observational data, conditional exchangeability is an
assumption we make (but can't typically verify)

P> Requires expert knowledge

» Causal claims are data + outside knowledge
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Learning goals for today

At the end of class, you will be able to:

1. Estimate the average causal effect using data from a
conditionally randomized experiment using inverse probability
weighting

2. Explain why conditional exchangeability might be reasonable
in some observational data
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