Synthetic Control (Sam's version)

INFO/STSCI/ILRST 3900: Causal Inference

7 Nov 2023

Learning goals for today

At the end of class, you will be able to:

- 1. Explain the intuition behind synthetic control
- 2. Understand how synthetic control relates to other causal inference methods

Logistics

► This week, read Ch 10 of The Causal Inference Mixtape

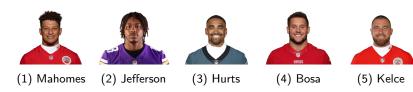
What is the effect of personal events on google searches?

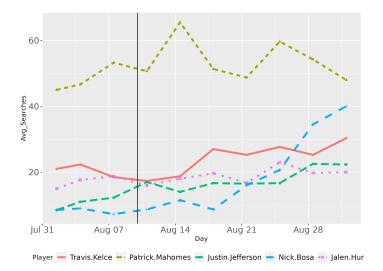
What is the effect of personal events on google searches?

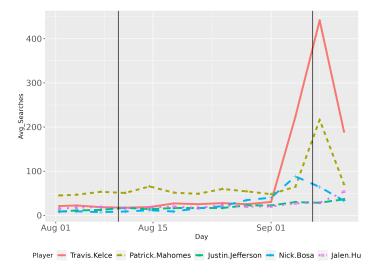
- ► When is the last time you googled a celebrity?
- ► Why do people google celebrities?
- ► Do certain events cause google searches on an individual to increase/decrease?

NFL Top 100

Before the start of each season, all current NFL players vote on the top players



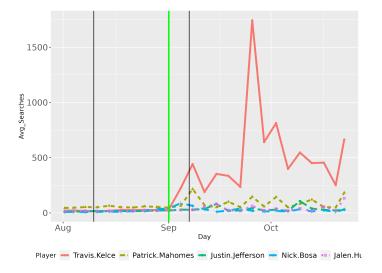




Jason Kelce addresses Travis Kelce and Taylor Swift dating speculation

By Lisa Respers France, CNN
Published 11:57 AM EDT, Fri September 15, 2023

fi y **z** ©



What is the causal effect of dating Taylor Swift on google searches?

What is the causal effect of dating Taylor Swift on google searches?

► Causal effect may vary over time

What is the causal effect of dating Taylor Swift on google searches?

- Causal effect may vary over time
- ► Causal effect at time t

$$au_{t,Kelce} = Y_{t,Kelce}^{Swift} - Y_{t,Kelce}^{NoSwift}$$

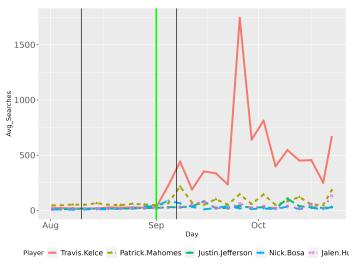
- \blacktriangleright For notation, let T_0 denote the time that the treatment occurs
- ▶ We observe $Y_{t,Kelce}^{S}$ for $t > T_0$ and $Y_{t,Kelce}^{NS}$ for $t < T_0$, but not at the same time!

What is the causal effect of dating Taylor Swift on google searches?

- ► Causal effect may vary over time
- ► Causal effect at time t

$$au_{t,Kelce} = Y_{t,Kelce}^{Swift} - Y_{t,Kelce}^{NoSwift}$$

- \blacktriangleright For notation, let T_0 denote the time that the treatment occurs
- ▶ We observe $Y_{t,Kelce}^{S}$ for $t > T_0$ and $Y_{t,Kelce}^{NS}$ for $t < T_0$, but not at the same time!
- ► Blank space in our data



- ► Kelce and Mahomes play for the same team
- ► Kelce and Jefferson play similar positions
- ► Kelce and Bosa both went to college in Ohio

- ► Google searches for NFL players are affected by many things that change over time
- ► Trend prior in pre-season may not be a good trend for during season
- ► Estimating the effect far away from the treatment seems iffy

- ► Google searches for NFL players are affected by many things that change over time
- ► Trend prior in pre-season may not be a good trend for during season
- ► Estimating the effect far away from the treatment seems iffy
- Kelce doesn't quite match any individual player exactly, but is similar to other players in different ways

- ► We don't observe $Y_{t,Kelce}^{NS}$ after T_0
- ► We do observe $Y_{t,Mahomes}^{NS}$, $Y_{t,Hurts}^{NS}$, etc.

- ► We don't observe $Y_{t,Kelce}^{NS}$ after T_0
- ► We do observe $Y_{t,Mahomes}^{NS}$, $Y_{t,Hurts}^{NS}$, etc.
- Create a "synthetic" version of of Kelce by weighting other players

$$Y_{t,Kelce}^{NS} \approx w_1 Y_{t,Mahomes}^{NS} + w_2 Y_{t,Hurts}^{NS} + w_3 Y_{t,Bosa}^{NS} + w_4 Y_{t,Jefferson}^{NS}$$
 where $w_j \geq 0$ and $\sum w_j = 1$

- ▶ We don't observe $Y_{t,Kelce}^{NS}$ after T_0
- ► We do observe $Y_{t,Mahomes}^{NS}$, $Y_{t,Hurts}^{NS}$, etc.
- Create a "synthetic" version of of Kelce by weighting other players

$$Y_{t,Kelce}^{
m NS} pprox w_1 Y_{t,Mahomes}^{
m NS} + w_2 Y_{t,Hurts}^{
m NS} + w_3 Y_{t,Bosa}^{
m NS} + w_4 Y_{t,Jefferson}^{
m NS}$$

where $w_j \geq 0$ and $\sum w_j = 1$

- ► So perhaps, Synthetic Kelce is
 - ► 50% Patrick Mahomes
 - ▶ 25% Justin Jefferson
 - ► 25% Nick Bosa
 - ▶ 0% Jalen Hurts

 \blacktriangleright Estimate counterfactual Travis Kelce $Y_{t,Kelce}^{\rm NS}$ by using Synthetic Kelce

$$Y_{t,Synthetic}^{ ext{NS}} = .5 imes Y_{t,Mahomes} + .25 imes Y_{t,Bosa} + .25 imes Y_{t,Jefferson}$$

▶ Estimate counterfactual Travis Kelce $Y_{t,Kelce}^{NS}$ by using Synthetic Kelce

$$Y_{t,Synthetic}^{NS} = .5 \times Y_{t,Mahomes} + .25 \times Y_{t,Bosa} + .25 \times Y_{t,Jefferson}$$

Post-treatment at time t, use difference between observed Kelce and Synthetic Kelce as estimate of the causal effect

$$\hat{\tau}_t = Y_{t,Kelce} - Y_{t,Synthetic}^{NS}$$

ightharpoonup Estimate counterfactual Travis Kelce $Y_{t,Kelce}^{\rm NS}$ by using Synthetic Kelce

$$Y_{t,Synthetic}^{NS} = .5 \times Y_{t,Mahomes} + .25 \times Y_{t,Bosa} + .25 \times Y_{t,Jefferson}$$

Post-treatment at time t, use difference between observed Kelce and Synthetic Kelce as estimate of the causal effect

$$\hat{\tau}_t = Y_{t, Kelce} - Y_{t, Synthetic}^{NS}$$

 Straightforward approach boils down to picking "good" weights

- ▶ We want "Synthetic Kelce" to predict $Y_{t,Kelce}^{NS}$
- lacktriangle We observe $Y_{t,Kelce} = Y_{t,Kelce}^{NS}$ before treatment when $t < T_0$

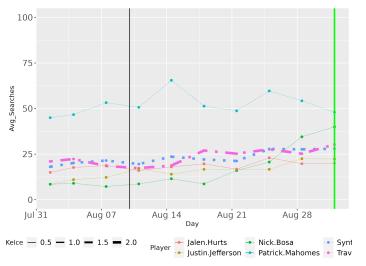
- ▶ We want "Synthetic Kelce" to predict $Y_{t,Kelce}^{NS}$
- ▶ We observe $Y_{t,Kelce} = Y_{t,Kelce}^{NS}$ before treatment when $t < T_0$
- ► Select weights to minimize

$$\sum_{t < T_0} \left(Y_{t, Kelce} - \underbrace{w_1 Y_{t, M} + w_2 Y_{t, H} + w_3 Y_{t, B} + w_4 Y_{t, J}}_{Y_{t, Synthetic}} \right)^2$$

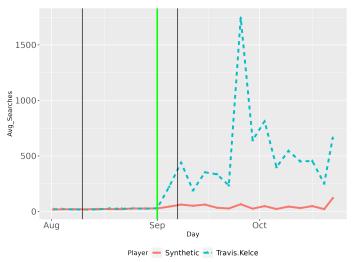
- ▶ We want "Synthetic Kelce" to predict $Y_{t,Kelce}^{NS}$
- lacktriangle We observe $Y_{t,Kelce} = Y_{t,Kelce}^{NS}$ before treatment when $t < T_0$
- ► Select weights to minimize

$$\sum_{t < T_0} \left(Y_{t,Kelce} - \underbrace{w_1 Y_{t,M} + w_2 Y_{t,H} + w_3 Y_{t,B} + w_4 Y_{t,J}}_{Y_{t,Synthetic}} \right)^2$$

 Can also be selected to minimize discrepancy between other pre-treatment covariates (preview of discussion)



Synthetic Kelce = .14 \times Mahomes + .20 \times Bosa + .66 \times Hurts



Synthetic Kelce = .14 \times Mahomes + .20 \times Bosa + .66 \times Hurts

Pros:

► Counterfactual prediction is easy to understand and explain

Pros:

- ► Counterfactual prediction is easy to understand and explain
- ► Works well when there are not many units and a single good match may be difficult to find

Pros:

- Counterfactual prediction is easy to understand and explain
- Works well when there are not many units and a single good match may be difficult to find
- ► Allows for extrapolation away from treatment time

Pros:

- Counterfactual prediction is easy to understand and explain
- Works well when there are not many units and a single good match may be difficult to find
- ► Allows for extrapolation away from treatment time

Cons:

► Requires lots of pre-treatment data to pick good weights

Pros:

- Counterfactual prediction is easy to understand and explain
- Works well when there are not many units and a single good match may be difficult to find
- ► Allows for extrapolation away from treatment time

Cons:

► Requires lots of pre-treatment data to pick good weights

Examples:

► What is the effect of political instability on the economy in Basque country in the 1960-70s?

Pros:

- Counterfactual prediction is easy to understand and explain
- Works well when there are not many units and a single good match may be difficult to find
- ► Allows for extrapolation away from treatment time

Cons:

► Requires lots of pre-treatment data to pick good weights

Examples:

- ► What is the effect of political instability on the economy in Basque country in the 1960-70s?
- ► What is the effect of post-soviet reunification on the German economy?

Pros:

- Counterfactual prediction is easy to understand and explain
- Works well when there are not many units and a single good match may be difficult to find
- ► Allows for extrapolation away from treatment time

Cons:

► Requires lots of pre-treatment data to pick good weights

Examples:

- ► What is the effect of political instability on the economy in Basque country in the 1960-70s?
- ► What is the effect of post-soviet reunification on the German economy?
- ▶ What is the effect of a cigarette tax on smoking in California?

Pros:

- Counterfactual prediction is easy to understand and explain
- Works well when there are not many units and a single good match may be difficult to find
- ► Allows for extrapolation away from treatment time

Cons:

► Requires lots of pre-treatment data to pick good weights

Examples:

- ► What is the effect of political instability on the economy in Basque country in the 1960-70s?
- ► What is the effect of post-soviet reunification on the German economy?
- ▶ What is the effect of a cigarette tax on smoking in California?

In some ways, synthetic control can be seen as a specific form of matching

- Predict unobserved potential outcome using observed outcome of "similar" units
- ► Can choose "matches" (i.e., weights) to match untreated outcomes (of eventually treated unit)

In some ways, synthetic control can be seen as a specific form of matching

- Predict unobserved potential outcome using observed outcome of "similar" units
- ► Can choose "matches" (i.e., weights) to match untreated outcomes (of eventually treated unit)
- Synthetic control differs in how weights are chosen
- ▶ Data across time (longitudinal) so we also observed untreated outcomes of (eventually) treated unit

In some ways, synthetic control can be seen as a specific form of matching

- Predict unobserved potential outcome using observed outcome of "similar" units
- ► Can choose "matches" (i.e., weights) to match untreated outcomes (of eventually treated unit)
- Synthetic control differs in how weights are chosen
- ▶ Data across time (longitudinal) so we also observed untreated outcomes of (eventually) treated unit
- ► Can directly match to minimize pre-treatment fit

- ▶ Both have observations pre and post treatment
- ▶ Diff-in-Diff requires parallel trends assumption

- Both have observations pre and post treatment
- ▶ Diff-in-Diff requires parallel trends assumption
- ► In synthetic control, we have a similar assumption, but parallel trends holds for synthetic unit
- Generally, Diff-in-Diff has fixed set of comparison units using prior knowledge (i.e., NJ vs PA)

- ▶ Both have observations pre and post treatment
- ► Diff-in-Diff requires parallel trends assumption
- ► In synthetic control, we have a similar assumption, but parallel trends holds for synthetic unit
- Generally, Diff-in-Diff has fixed set of comparison units using prior knowledge (i.e., NJ vs PA)
- ► Synthetic control, we can start with a large "donor pool" and select weights using data

Learning goals for today

At the end of class, you will be able to:

- 1. Explain the intuition behind synthetic control
- 2. Understand how synthetic control relates to other causal inference methods