Synthetic Control (Sam's version)

INFO/STSCI/ILRST 3900: Causal Inference

7 Nov 2023
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Learning goals for today

At the end of class, you will be able to:
1. Explain the intuition behind synthetic control

2. Understand how synthetic control relates to other causal
inference methods
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Logistics

» This week, read Ch 10 of The Causal Inference Mixtape
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What is the effect of personal events on google searches?
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What is the effect of personal events on google searches?

» When is the last time you googled a celebrity?
» Why do people google celebrities?

» Do certain events cause google searches on an individual to
increase/decrease?
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NFL Top 100

Before the start of each season, all current NFL players vote on the

top players

R S AL

) Mahomes  (2) Jefferson (3) Hurts (4) Bosa (5) Kelce
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Google searches for NFL players
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Google searches for NFL players
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Google searches for NFL players

= . enterfainment  Movies  Television ~ Celebrity

Jason Kelce addresses Travis Kelce and
Taylor Swift dating speculation

a By Lisa Respers France, CNN
Published 11:57 AM EDT, Fri September 15, 2023

Ay=sce
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Google searches for NFL players

Taylor Swift’s The Eras Tour
Could Generate $4.6 Billion For

Local Economies
0 Ao Jun 9, 2023, 08:00am EDT
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Google searches for NFL players
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Google searches for NFL players

What is the causal effect of dating Taylor Swift on google
searches?
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Google searches for NFL players

What is the causal effect of dating Taylor Swift on google
searches?

» Causal effect may vary over time
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Google searches for NFL players

What is the causal effect of dating Taylor Swift on google
searches?

» Causal effect may vary over time
» Causal effect at time t

_ ySwift  y/NoSwift
Tt,Kelce = Tt Kelce t,Kelce

» For notation, let Ty denote the time that the treatment occurs

» We observe Y2, for t > To and YN2_, _for t < To, but
not at the same time!
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Google searches for NFL players

What is the causal effect of dating Taylor Swift on google
searches?

» Causal effect may vary over time
» Causal effect at time t

_ ySwift  y/NoSwift
Tt,Kelce = Tt Kelce t,Kelce

» For notation, let Ty denote the time that the treatment occurs

» We observe Y2, for t > To and YN2_, _for t < To, but
not at the same time!

» Blank space in our data
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Google searches for NFL players
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Player == Travis.Kelce = Patrick.Mahomes == Justin.Jefferson == Nick.Bosa == Jalen.Ht

» Kelce and Mahomes play for
» Kelce and Jefferson play simi

the same team
lar positions

» Kelce and Bosa both went to college in Ohio
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Synthetic Control
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Synthetic Control

» Google searches for NFL players are affected by many things
that change over time

» Trend prior in pre-season may not be a good trend for during
season

» Estimating the effect far away from the treatment seems iffy
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Synthetic Control

» Google searches for NFL players are affected by many things
that change over time

» Trend prior in pre-season may not be a good trend for during
season

» Estimating the effect far away from the treatment seems iffy

» Kelce doesn’t quite match any individual player exactly, but is
similar to other players in different ways
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Synthetic Control
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Synthetic Control

> We don't observe YN? Relce after To

NS NS
» We do observe Yt Vahomes' YmHurts, etc.
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Synthetic Control

> We don't observe YN? Relce after To

NS
» We do observe Yt Vahomes' YmHurts, etc.

> Create a “synthetic” version of of Kelce by weighting other
players

NS ~ NS NS NS NS
Yt,Kelce ~w Yt,Mahomes +tw Yt,Hurts +ws3 Yt,Bosa +wy Yt,Jefferson

where w; > 0and ) wj =1

10/18



Synthetic Control

v

We don't observe YN2 Relce after To

NS NS
We do observe Yt Vahomes' YmHurts, etc.

Create a “synthetic” version of of Kelce by weighting other
players

NS ~ NS NS NS NS
Yt,Kelce ~w Yt,Mahomes +tw Yt,Hurts +ws3 Yt,Bosa +wy Yt,Jefferson

where w; > 0and ) wj =1
So perhaps, Synthetic Kelce is
» 50% Patrick Mahomes
» 25% Justin Jefferson
» 25% Nick Bosa
» 0% Jalen Hurts
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Synthetic Control

» Estimate counterfactual Travis Kelce Yt’:‘}ée,ce by using
Synthetic Kelce

NS
Yt,Synthetic =.5x Yt,Mahomes +.25 x Yt,Bosa +.25 % Yt,Jefferson
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Synthetic Control

» Estimate counterfactual Travis Kelce Yt’:‘}ée,ce by using
Synthetic Kelce

NS
Yt,Synthetic =.5x Yt,Mahomes +.25 x Yt,Bosa +.25 % Yt,Jefferson
» Post-treatment at time t, use difference between observed
Kelce and Synthetic Kelce as estimate of the causal effect

~ NS
Tt = Yt,Kelce - Yt,Synthetic

» Straightforward approach boils down to picking “good”
weights
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Picking Weights

12/18



Picking Weights

» We want “Synthetic Kelce" to predict Ytnge/ce

» We observe Y; keice = YtNie,ce before treatment when t < Ty
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Picking Weights

» We want “Synthetic Kelce" to predict Ytnge/ce
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» Select weights to minimize
2

§ YiKelce = W1Yem +woYen+w3Yig + waYiy

t< TO ~\~
Yt, Synthetic
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Picking Weights

» We want “Synthetic Kelce" to predict Yt’}’;(ge,ce
» We observe Y; keice = Yt”\’ie,ce before treatment when t < Ty
» Select weights to minimize

2

§ YiKelce = W1Yem +woYen+w3Yig + waYiy

t< TO ~\~
Yt, Synthetic

» Can also be selected to minimize discrepancy between other
pre-treatment covariates (preview of discussion)
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Synthetic Control
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Synthetic Control
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Synthetic Control

Pros:

» Counterfactual prediction is easy to understand and explain
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Synthetic Control

Pros:
» Counterfactual prediction is easy to understand and explain

» Works well when there are not many units and a single good
match may be difficult to find

» Allows for extrapolation away from treatment time
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» Requires lots of pre-treatment data to pick good weights

Examples:

» What is the effect of political instability on the economy in
Basque country in the 1960-70s?
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Synthetic control and Matching
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Synthetic control and Matching

In some ways, synthetic control can be seen as a specific form of
matching

» Predict unobserved potential outcome using observed
outcome of “similar” units

» Can choose “matches” (i.e., weights) to match untreated
outcomes (of eventually treated unit)
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Synthetic control and Matching

In some ways, synthetic control can be seen as a specific form of
matching

» Predict unobserved potential outcome using observed
outcome of “similar” units

» Can choose “matches” (i.e., weights) to match untreated
outcomes (of eventually treated unit)

» Synthetic control differs in how weights are chosen

» Data across time (longitudinal) so we also observed untreated
outcomes of (eventually) treated unit

» Can directly match to minimize pre-treatment fit
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Synthetic control and Difference and Difference
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Synthetic control and Difference and Difference

» Both have observations pre and post treatment

» Diff-in-Diff requires parallel trends assumption
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Synthetic control and Difference and Difference

v

Both have observations pre and post treatment

Diff-in-Diff requires parallel trends assumption

In synthetic control, we have a similar assumption, but parallel
trends holds for synthetic unit

Generally, Diff-in-Diff has fixed set of comparison units using
prior knowledge (i.e., NJ vs PA)
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Synthetic control and Difference and Difference

v

Both have observations pre and post treatment
Diff-in-Diff requires parallel trends assumption

In synthetic control, we have a similar assumption, but parallel
trends holds for synthetic unit

Generally, Diff-in-Diff has fixed set of comparison units using
prior knowledge (i.e., NJ vs PA)

Synthetic control, we can start with a large “donor pool” and
select weights using data
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Learning goals for today

At the end of class, you will be able to:
1. Explain the intuition behind synthetic control

2. Understand how synthetic control relates to other causal
inference methods
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