Current research: lan

INFO/STSCI/ILRST 3900: Causal Inference

28 Nov 2023

Learning goals for today

At the end of class, you will be able to

1. define effects when some potential outcomes do not exist
2. estimate by bounding
3. connect ideas from this class to current research

Non-existent outcomes

in research on inequality

Ian Lundberg

Cornell Information Science ilundberg@cornell.edu Soonhong Cho
UCLA Political Science soonhongcho@g.ucla.edu

A causal approach

Replication code here

Try our (beta) R package!
ilundberg.github.io/pstratreg

The setting

Parenthood reduces hourly wages for women
(Budig \& England 2001; Gough \& Noonan 2013)
and increases wages for men
(Killewald 2013; Yu \& Hara 2021)

The motherhood wage penalty may be disappearing over time (Pal \& Waldfogel 2016; Buchmann \& McDaniel 2016; but see Jee et al. 2019)

Data: NLSY97

Data: NLSY97

Data: NLSY97

$$
\begin{aligned}
\log (\text { Wage })=\beta_{0} & +\beta_{1}(\text { Mother }) \\
& +\beta_{2}(\text { Age }) \\
& +\beta_{3}(\text { Married }) \\
& +\beta_{4}(\text { Education }) \\
& +\beta_{5}(\text { Work Experience }) \\
& +\beta_{6}(\text { Full-Time }) \\
& +\beta_{7}(\text { Tenure in Job }) \\
& +\epsilon
\end{aligned}
$$

Maya

Maya

$$
\underline{\text { if a mother }}=\underline{\text { if not }}=\underline{\text { effect }}
$$

employment
wage

Maya

Maya

Maya

Maya

Maya

Maya

Mia

$$
\underline{\text { if a mother }}-\underline{\text { if not }}=\underline{\text { effect }}
$$

employment
wage

Mia

Principal Stratification
Frangakis \& Rubin 2002; Zhang \& Rubin 2003
For an intro, see Miratrix et al. 2018

Maya

$$
\begin{aligned}
& \underline{\text { if a mother }}-\underline{\text { if not }}=\underline{\text { effect }}
\end{aligned}
$$

$$
\begin{aligned}
& \$ 30-\$ 40=-\$ 10
\end{aligned}
$$

Mia
if a mother $-\frac{\text { if not }}{}=\frac{\text { effect }}{1}$
?? $-\$ 20=? ?$

Maya
Nancy

if a mother	-	if not	$=$	effect	if a mother	-	if not	$=$	effect
and			$=$	0	a-s)	-		$=$	0
\$30	-	\$40	$=$	-\$10	\$30	-	\$40	$=$	-\$10

Mia
Nia

Maya is a Mother

if a mother	
$-\frac{\text { if not }}{}$	$=\frac{\text { effect }}{}$
$\$ 30$	$=0$
$\$ 40$	$=-\$ 10$

Mia is a Mother
$\begin{array}{ccc}\text { if a mother } & -\frac{\text { if not }}{2} & =\frac{\text { effect }}{} \\ ? ? & =1 \\ ? ? & =\$ 20 & =?\end{array}$

Nancy is a Non-Mother

$\frac{\text { if a mother }}{-\frac{\text { if not }}{}}=\frac{\text { effect }}{0}$	
$\$-\$ 30$	$=0$

Nia is a Non-Mother

Maya is a Mother

if a mother
- if not

$\$ 30-\$ 40=-\$ 10$

Mia is a Mother

if a mother - if not	$=$ effect
?? $-\$ 20$	$=$

Nancy is a Non-Mother

Nia is a Non-Mother

Maya is a Mother

if a mother
- if not
:---
$\$ 30-\$ 40$

Mia is a Mother

Nancy is a Non-Mother

Nia is a Non-Mother

Nancy is a Non-Mother

Nia is a Non-Mother

Average Observed $\$ 30$

Mia is a Mother

Average Observed
$\$ 30$

Nancy is a Non-Mother

Nia is a Non-Mother

Average Observed
\$30

Maya is a Mother

if a mother	
$-\frac{\text { if not }}{}$	$=\frac{\text { effect }}{}$
$\$ 30$	$=0$
$\$ 40$	$=-\$ 10$

Mia is a Mother
$\begin{array}{ccc}\text { if a mother } & -\frac{\text { if not }}{2} & =\frac{\text { effect }}{} \\ ? ? & =1 \\ ? ? & =\$ 20 & =?\end{array}$

Nancy is a Non-Mother

$\frac{\text { if a mother }}{-\frac{\text { if not }}{}}=\frac{\text { effect }}{0}$	
$\$-\$ 30$	$=0$

Nia is a Non-Mother

Maya is a Mother

$\frac{\text { if a mother }}{-\frac{\text { if not }}{2}}=\frac{\text { effect }}{2}$	
$\$ 30$	$=0$

Mia is a Mother

Nancy is a Non-Mother

Nia is a Non-Mother

1) Average effect of motherhood on employment
Maya is a Mother

$\frac{\text { if a mother }}{-\frac{\text { if not }}{}}=\frac{\text { effect }}{2}$	$=0$
$\$ 30$	$=\$ 40$

Mia is a Mother

Nancy is a Non-Mother

Nia is a Non-Mother

1) Average effect of motherhood on employment
2) Wage effect among those employed regardless

Causal assumptions

birth this year \longrightarrow wage next year

unobserved common causes full-time job
work experience job tenure
\longrightarrow employed next year
age
marital status
education
race

Estimation: Effect on employment

Estimation: Effect on employment

Model employment given birth and confounders

Estimation: Effect on employment

Model employment given birth and confounders

1) recode birth as TRUE. Predict for everyone

Estimation: Effect on employment

Model employment given birth and confounders

1) recode birth as TRUE. Predict for everyone
2) recode birth as FALSE. Predict for everyone

Estimation: Effect on employment

Model employment given birth and confounders

1) recode birth as TRUE. Predict for everyone
2) recode birth as FALSE. Predict for everyone average (1) - (2) among the mothers

Results: Effect on employment

Effect of Parenthood on Employment

Results: Effect on employment

Effect of Parenthood on Employment

Results: Effect on employment

Effect of Parenthood on Employment

Maya is a Mother

Mia is a Mother

Nancy is a Non-Mother

Nia is a Non-Mother

1) Average effect of motherhood on employment
2) Wage effect among those employed regardless
Maya is a Mother

$\frac{\text { if a mother }}{-\frac{\text { if not }}{}}=\frac{\text { effect }}{2}$	$=0$
$\$ 30$	$=\$ 40$

Mia is a Mother

Nancy is a Non-Mother

Nia is a Non-Mother

1) Average effect of motherhood on employment
2) Wage effect among those employed regardless

Maya is a Mother

if a mother	
$-\frac{\text { if not }}{}$	$=\frac{\text { effect }}{}$
$\$ 30$	$=0$
$-\$ 40$	$=-\$ 10$

Mia is a Mother
if a mother $-\frac{\text { if not }}{}=\frac{\text { effect }}{1}$
$? ?-\$ 20=? ?$

Nancy is a Non-Mother

Nia is a Non-Mother

1) Average effect of motherhood on employment
2) Wage effect among those employed regardless

Maya is a Mother

if a mother	
$-\frac{\text { if not }}{}$	$=\frac{\text { effect }}{}$
$\$ 30$	$=0$
$-\$ 40$	$=-\$ 10$

Mia is a Mother
if a mother $-\frac{\text { if not }}{}=\frac{\text { effect }}{1}$
$? ?-\$ 20=? ?$

Nancy is a Non-Mother

Nia is a Non-Mother

1) Average effect of motherhood on employment
2) Wage effect among those employed regardless

Wages of Employed Non-Mothers

Wages of Employed Non-Mothers

bound
this
\downarrow

Log wage of as a mother - as a non-mother
among those who would be employed in either condition

bound
 this
 \downarrow

Log wage of as a mother - as a non-mother
among those who would be employed in either condition

Assumption

Employed mothers would also be employed
if they had no children

Log wage of as a mother - as a non-mother
among those who would be employed in either condition

Assumption

Employed mothers would also be employed
if they had no children

Results

Results

Employed
Mothers
Employed
Non-Mothers

Results

Employed _ Employed
Mothers Non-Mothers

Results

What we know that we did not know before

We knew
in recent years, motherhood only weakly predicts pay ${ }^{*}$

What we know that we did not know before

We knew
in recent years, motherhood only weakly predicts pay ${ }^{*}$
*among the employed

What we know that we did not know before

We knew
in recent years, motherhood only weakly predicts pay ${ }^{*}$
*among the employed

This fact is consistent with two stories

What we know that we did not know before

We knew
in recent years, motherhood only weakly predicts pay ${ }^{*}$
*among the employed

This fact is consistent with two stories

1. motherhood's causal effect on pay is small

What we know that we did not know before

We knew

in recent years, motherhood only weakly predicts pay ${ }^{*}$
*among the employed

This fact is consistent with two stories

1. motherhood's causal effect on pay is small
or
2. employed non-mothers are the wrong comparison population

What we know that we did not know before

We knew
in recent years, motherhood only weakly predicts pay ${ }^{*}$
*among the employed

This fact is consistent with two stories

1. motherhood's causal effect on pay is small
or
2. employed non-mothers are the wrong comparison population

- lowest-earning non-mothers might stop paid work with a child

What we know that we did not know before

We know how to think about outcomes that don't exist

What we know that we did not know before

We know how to think about outcomes that don't exist

What we know that we did not know before

We know how to think about outcomes that don't exist

Description

Uses principal stratification and parametric models to bound the average causal effect among those who would have a valid outcome under either treatment condition

Usage

pstratreg
formula y,
formula_m,
family_y $=$ "gaussian",
homoskedastic $=T$,
data,
weights $=$ NULL,
treatment_name,
monotonicity_positive $=$ FALSE,
monotonicity_negative $=$ FALSE,
aggregate $=$ TRUE,
group_vars $=$ NULL

Learning goals for today

At the end of class, you will be able to

1. define effects when some potential outcomes do not exist
2. estimate by bounding
3. connect ideas from this class to current research
