Defining causal effects

Cornell STSCI / INFO / ILRST 3900: Causal Inference Fall 2023

24 Aug 2022

Learning goals for today

By the end of class, you will be able to

- explain the fundamental problem of causal inference and the need for causal arguments
- define potential outcomes
- recall mathematical concepts from probability
 - random variables
 - expectation
 - conditional expectation

Left photo: By Fernando Frazão/Agência Brasil -

http://agenciabrasil.ebc.com.br/sites/_agenciabrasil2013/files/fotos/1035034-_mg_0802_04.08.16. jpg.CCBV3.0br,https://commons.wikimedia.org/w/index.php?curid=50546410 Right photo: By Agencia Brasil Fotografias - EUA levam ouro na ginástica artística feminina; Brasil fica em 8 lugar, CC BY 2.0, https://commons.wikimedia.org/w/index.php?curid=50584648

- 1. Statistical evidence
 - Simone Biles swung on the uneven bars. She won a gold medal.

- 1. Statistical evidence
 - Simone Biles swung on the uneven bars. She won a gold medal.
 - ▶ I did not swing on the uneven bars. I did not win a gold medal.

- 1. Statistical evidence
 - Simone Biles swung on the uneven bars. She won a gold medal.
 - ► I did not swing on the uneven bars. I did not win a gold medal.
- 2. Possible causal claim
 - Swinging on the uneven bars causes a person to win a gold medal.

- 1. Statistical evidence
 - Simone Biles swung on the uneven bars. She won a gold medal.
 - ▶ I did not swing on the uneven bars. I did not win a gold medal.
- 2. Possible causal claim
 - Swinging on the uneven bars causes a person to win a gold medal.

	Do you win gold if you:		Causal effect
	Swing	Do not swing	of swinging
Simone Biles	Yes (1)	?	?
lan	?	No (0)	?

- 1. Statistical evidence
 - Simone Biles swung on the uneven bars. She won a gold medal.
 - ▶ I did not swing on the uneven bars. I did not win a gold medal.
- 2. Possible causal claim
 - Swinging on the uneven bars causes a person to win a gold medal.

	Do you win gold if you:		Causal effect
	Swing	Do not swing	of swinging
Simone Biles	Yes (1)	No (0)	?
lan	?	No (0)	?

- 1. Statistical evidence
 - Simone Biles swung on the uneven bars. She won a gold medal.
 - ▶ I did not swing on the uneven bars. I did not win a gold medal.
- 2. Possible causal claim
 - Swinging on the uneven bars causes a person to win a gold medal.

	Do you win gold if you:		Causal effect
	Swing	Do not swing	of swinging
Simone Biles	Yes (1)	No (0)	+1
lan	?	No (0)	?

- 1. Statistical evidence
 - Simone Biles swung on the uneven bars. She won a gold medal.
 - ▶ I did not swing on the uneven bars. I did not win a gold medal.
- 2. Possible causal claim
 - Swinging on the uneven bars causes a person to win a gold medal.

	Do you win gold if you:		Causal effect
	Swing	Do not swing	of swinging
Simone Biles	Yes (1)	No (0)	+1
lan	No (0)	No (0)	?

- 1. Statistical evidence
 - Simone Biles swung on the uneven bars. She won a gold medal.
 - ▶ I did not swing on the uneven bars. I did not win a gold medal.
- 2. Possible causal claim
 - Swinging on the uneven bars causes a person to win a gold medal.

	Do you win gold if you:		Causal effect
	Swing	Do not swing	of swinging
Simone Biles	Yes (1)	No (0)	+1
lan	No (0)	No (0)	0

Descriptive evidence

Person 1	lifespan	
Person 2		lifespan
Person 3	lifespan	
Person 4		lifespan
Person 5	lifespan	
Person 6	lifespan	
Person 7		lifespan
i eison i		
Person 8	lifespan	
Person 8	^{lifespan} Outcome under	Outcome under

lifespan	lifespan
lifespan	lifespan
Outcome	Outcome
under	under
Mediterranean	standard
diet	diet

Person 1	lifespan	missing
Person 2	missing	lifespan
Person 3	lifespan	missing
Person 4	missing	lifespan
Person 5	lifespan	missing
Person 6	lifespan	missing
Person 7	missing	lifespan
Person 8	lifespan	missing
	Outcome under	Outcome under
	Mediterranean diet	standard diet

lifespan	lifespan
lifespan	lifespan
Outcome	Outcome
under	under
Mediterranean	standard
diet	diet

Causal inference is a missing data problem

Person 1	lifespan	missing	lifespan	lifespan
Person 2	missing	lifespan	lifespan	lifespan
Person 3	lifespan	missing	lifespan	lifespan
Person 4	missing	lifespan	lifespan	lifespan
Person 5	lifespan	missing	lifespan	lifespan
Person 6	lifespan	missing	lifespan	lifespan
Person 7	missing	lifespan	lifespan	lifespan
Person 8	lifespan	missing	lifespan	lifespan
	Outcome under Mediterranean diet	Outcome under standard diet	Outcome under Mediterranean diet	Outcome under standard diet

Y_i Outcome Whether person *i* survived

- *Y_i* Outcome
- A_i Treatment

Whether person i survived Whether person i ate a Mediterranean diet

- Y_i Outcome
- A_i Treatment
- Y_i^a

Whether person *i* survived Whether person i ate a Mediterranean diet Potential Outcome Outcome person *i* would realize if assigned to treatment value a

 Y_i OutcomeWhether person i survived A_i TreatmentWhether person i ate a Mediterranean diet Y_i^a Potential OutcomeOutcome person i would realize if
assigned to treatment value a

Examples:

 $Y_{\rm lan} = {
m survived}$

lan survived

 Y_i OutcomeWhether person i survived A_i TreatmentWhether person i ate a Mediterranean diet Y_i^a Potential OutcomeOutcome person i would realize if
assigned to treatment value a

Examples:

$Y_{lan} = \mathtt{survived}$	lan survived
$\mathcal{A}_{lan} = \mathtt{MediterraneanDiet}$	lan ate a Mediterranean diet

 Y_i OutcomeWhether person i survived A_i TreatmentWhether person i ate a Mediterranean diet Y_i^a Potential OutcomeOutcome person i would realize if
assigned to treatment value a

Examples:

$Y_{lan} = \mathtt{survived}$	lan survived
$A_{lan} = \texttt{MediterraneanDiet}$	Ian ate a Mediterranean diet
$Y_{lan}^{MediterraneanDiet} = \mathtt{survived}$	Ian would survive on a Mediterranean diet

 Y_i OutcomeWhether person i survived A_i TreatmentWhether person i ate a Mediterranean diet Y_i^a Potential OutcomeOutcome person i would realize if
assigned to treatment value a

Examples:

 $\begin{array}{ll} Y_{\text{lan}} = \text{survived} & \text{lan survived} \\ A_{\text{lan}} = \text{MediterraneanDiet} & \text{lan ate a Mediterranean diet} \\ Y_{\text{lan}}^{\text{MediterraneanDiet}} = \text{survived} & \text{lan would survive on a Mediterranean diet} \\ Y_{\text{lan}}^{\text{StandardDiet}} = \text{died} & \text{lan would die on a standard diet} \end{array}$

 Y_i OutcomeWhether person i survived A_i TreatmentWhether person i ate a Mediterranean diet Y_i^a Potential OutcomeOutcome person i would realize if
assigned to treatment value a

Examples:

$Y_{lan} = \mathtt{survived}$	lan survived
$A_{lan} = \texttt{MediterraneanDiet}$	lan ate a Mediterranean diet
$Y_{\sf lan}^{\sf MediterraneanDiet} = { t survived}$	Ian would survive on a Mediterranean diet
$Y_{Ian}^{StandardDiet} = \mathtt{died}$	lan would die on a standard diet

Discuss. Which potential outcome is observed? Which is counterfactual?

A person's potential outcome is a fixed quantity

A person's potential outcome is a fixed quantity

 $Y_{\text{lan}}^{\text{MediterraneanDiet}} = \text{survived}$

A person's potential outcome is a fixed quantity

 $Y_{\text{lan}}^{\text{MediterraneanDiet}} = \texttt{survived}$

The outcome for a random person is a random variable

A person's potential outcome is a fixed quantity

 $Y_{\text{lan}}^{\text{MediterraneanDiet}} = \texttt{survived}$

The outcome for a random person is a random variable

► Draw a random person from the population

A person's potential outcome is a fixed quantity

```
Y_{\mathsf{lan}}^{\mathsf{MediterraneanDiet}} = \mathtt{survived}
```

The outcome for a random person is a random variable

- Draw a random person from the population
- Assign them a Mediterranean diet

A person's potential outcome is a fixed quantity

```
Y_{\text{lan}}^{\text{MediterraneanDiet}} = \texttt{survived}
```

The outcome for a random person is a random variable

- Draw a random person from the population
- Assign them a Mediterranean diet
- The outcome $Y^{\text{MediterraneanDiet}}$ is a random variable:
 - ► takes the value survived if we randomly sample some people
 - takes the value died if we randomly sample others

A person's potential outcome is a fixed quantity

```
Y_{\text{lan}}^{\text{MediterraneanDiet}} = \texttt{survived}
```

The outcome for a random person is a random variable

- Draw a random person from the population
- Assign them a Mediterranean diet
- The outcome $Y^{\text{MediterraneanDiet}}$ is a random variable:
 - ► takes the value survived if we randomly sample some people
 - takes the value died if we randomly sample others

Check for understanding:

Does it make sense to write $V(Y_i^a)$? How about $V(Y^a)$

Notation: Expectation operator

The expectation operator E() denotes the population mean

$$\mathsf{E}(Y^a) = \frac{1}{n} \sum_{i=1}^n Y_i^a$$

The quantity Y^a inside the expectation must be a random variable

Notation: Expectation operator

The expectation operator E() denotes the population mean

$$\mathsf{E}(Y^a) = \frac{1}{n} \sum_{i=1}^n Y_i^a$$

The quantity Y^a inside the expectation must be a random variable

A conditional expectation is denoted with a vertical bar

$$\mathsf{E}(Y \mid A = a) = \frac{1}{n_a} \sum_{i:A_i = a} Y_i$$

Practice: How would you say this in English?

We might wonder how a person's earnings relate to whether they hold a college degree

1. E(Earnings | Degree = TRUE) > E(Earnings | Degree = FALSE)

2. $E(Earnings^{Degree=TRUE}) > E(Earnings^{Degree=FALSE})$

Practice: How would you say this in English?

We might wonder how a person's earnings relate to whether they hold a college degree

1. E(Earnings | Degree = TRUE) > E(Earnings | Degree = FALSE)

Average earnings are higher among those with college degrees

2. $E(Earnings^{Degree=TRUE}) > E(Earnings^{Degree=FALSE})$

Practice: How would you say this in English?

We might wonder how a person's earnings relate to whether they hold a college degree

- 1. E(Earnings | Degree = TRUE) > E(Earnings | Degree = FALSE)
 - Average earnings are higher among those with college degrees

2. $E(Earnings^{Degree=TRUE}) > E(Earnings^{Degree=FALSE})$

On average, a degree causes higher earnings

Practice: How would you write this in math?

1. On average, students who do the homework learn more than those who don't

2. On average, doing the homework causes more learning

Practice: How would you write this in math?

1. On average, students who do the homework learn more than those who don't

 $E(\text{Learning} \mid HW = \text{TRUE}) > E(\text{Learning} \mid HW = \text{FALSE})$

2. On average, doing the homework causes more learning

Practice: How would you write this in math?

1. On average, students who do the homework learn more than those who don't

 $E(\text{Learning} \mid HW = \text{TRUE}) > E(\text{Learning} \mid HW = \text{FALSE})$

2. On average, doing the homework causes more learning $\mathsf{E}(\mathsf{Learning}^{\mathsf{HW}=\mathtt{TRUE}}) > \mathsf{E}(\mathsf{Learning}^{\mathsf{HW}=\mathtt{FALSE}})$

Learning goals for today

By the end of class, you will be able to

- explain the fundamental problem of causal inference and the need for causal arguments
- define potential outcomes
- recall mathematical concepts from probability
 - random variables
 - expectation
 - conditional expectation

You can now

- ► Read Chapter 1 of Hernán and Robins 2020
- ► Begin Problem Set 1