Model Based Approach to Network Interference

Cornell STSCI / INFO / ILRST 3900 Fall 2025 causal3900.github.io

Nov 20 2025

Learning goals for today

At the end of class, you will be able to

- ► Use model based regression to estimate global average treatment effect under interference
- ► Use inverse probability weighting (IPW) to estimate global average treatment effect with a given exposure mapping
- ► Explain the implications of the choice of randomized design on the variance of the estimator

Logistics

- ► Project Check-ins due Nov 25
- ► PSET 6 due Nov 25; Quiz 6 Dec 2

Review of Network Interference

- ► Under interference the potential outcome of indiv *i* can depend on the treatments of others as well
- ▶ Requires a change in notation to indicate the additional dependence, e.g. Y_i^a where $\mathbf{a} = (a_1, a_2, \dots a_n)$
- Assume potential outcome $Y_i^{\mathbf{a}}$ depends only on \mathbf{a} only through treatment a_i and exposure level e_i as given by exposure mapping $e_i = f_i(\mathbf{a})$, e.g. neighborhood interference, anonymous interference

Basic Solutions

► We will focus on estimating the Global Average Treatment Effect from randomized control trials under the neighborhood interference assumption

GATE =
$$\frac{1}{n} \sum_{i=1}^{n} \left(Y_i^{(1,1)} - Y_i^{(0,0)} \right)$$

- ► Two methods for estimation under exchangeability:
 - ► Standardization & parametric g-formula with outcome model
 - Inverse treatment probability weighted estimator
- ► Earliest solutions for interference modify these approaches to estimate means under desired treatment and exposure levels

Recap of using outcome modeling

► Learn a parametric model to predict expected outcome *Y* given treatment and covariates

$$L \xrightarrow{A \to Y} Y$$

- ▶ Estimate Y_i^a using the learned model, $\hat{E}(Y \mid L = \ell_i, A = a)$
- ► Average estimates over all units

$$\hat{\mathsf{E}}(Y^{\mathsf{a}}) = \frac{1}{n} \sum_{i} \hat{\mathsf{E}}(Y \mid L = \ell_{i}, A = \mathsf{a})$$

- ► Need *L* to be a sufficient adjustment set so that we have conditional exchangeability
- ▶ Under RCT, don't even need to condition on *L*

- ► Key Idea: Learn a parametric model to predict expected outcome $Y_i^{(a,e)}$ given treatment and exposure level
- ► Fit model to data $\{(A_i, E_i, Y_i)\}_{i \in [n]}$
- ► Typically requires anonymous interference where exposure level is number or fraction of treated neighbors treated
- For every unit i, use the learned model to predict the outcome under treatment a and exposure level e, denoted $\hat{Y}_i^{(a,e)}$
- ► Average over all units,

$$\hat{\mathsf{E}}(Y^{a,e}) = \frac{1}{n} \sum_{i} \hat{Y}_{i}^{(a,e)}$$

- ▶ Linear models are most common, e.g. $Y_i = \alpha A_i + \beta E_i + \gamma$, where E_i is fraction of treated neighbors
- ► Global Average Treatment Effect

$$\widehat{\mathsf{GATE}} = \frac{1}{n} \sum_{i} \hat{Y}_{i}^{(1,1)} - \frac{1}{n} \sum_{i} \hat{Y}_{i}^{(0,0)}$$
$$= \frac{1}{n} \sum_{i} (\hat{\alpha} + \hat{\beta} + \hat{\gamma}) - \frac{1}{n} \sum_{i} \hat{\gamma} = \hat{\alpha} + \hat{\beta}$$

▶ Direct Average Treatment Effect

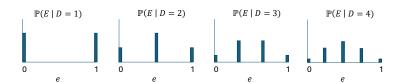
$$\widehat{\mathsf{DATE}} = \frac{1}{n} \sum_{i} \hat{Y}_{i}^{(1,0)} - \frac{1}{n} \sum_{i} \hat{Y}_{i}^{(0,0)}$$
$$= \frac{1}{n} \sum_{i} (\hat{\alpha} + \hat{\gamma}) - \frac{1}{n} \sum_{i} \hat{\gamma} = \hat{\alpha}$$

► Indirect Average Treatment Effect

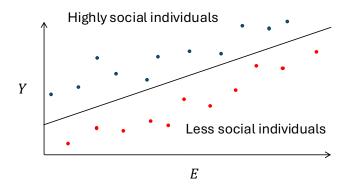
$$\widehat{\mathsf{IATE}} = \frac{1}{n} \sum_{i} \hat{Y}_{i}^{(0,1)} - \frac{1}{n} \sum_{i} \hat{Y}_{i}^{(0,0)}$$
$$= \frac{1}{n} \sum_{i} (\hat{\beta} + \hat{\gamma}) - \frac{1}{n} \sum_{i} \hat{\gamma} = \hat{\beta}$$

- ► What assumptions are needed?
- ▶ What is the relevant causal graph in the network setting?
- ▶ When do we need to think about adjusting for confounders?

- When could we still need to condition on covariates to get a sufficient adjustment set even if treatments are randomized?
- ▶ E.g. let exposure level be fraction of treated neighbors, then distribution of E_i depends on number of neighbors D_i



- ► When could we still need to condition on covariates to get a sufficient adjustment set even if treatments are randomized?
- ▶ E.g. let exposure level be fraction of treated neighbors, then distribution of E_i depends on number of neighbors D_i
- ightharpoonup Number of neighbors D_i affects outcome even when conditioned on exposure level



Recap of Inverse probability of treatment weighting

▶ Estimate means by averaging the outcomes of units with treatment $A_i = a$ multiplied by the inverse of probability of the treatment conditioned on covariates $\mathbb{P}(A_i = a \mid L_i)$

$$\hat{E}(Y^a) = \frac{1}{n} \sum_{i: A_i = a} \frac{Y_i}{\mathbb{P}(A_i = a \mid L_i)}$$

- \blacktriangleright π_i denotes probability that i is treated conditioned on its covariates, s.t. $\mathbb{P}(A_i = 1|L_i) = \pi_i$ and $\mathbb{P}(A_i = 0|L_i) = 1 \pi_i$
- ► Take difference of estimates for treated and control

$$\hat{\mathsf{E}}(Y^{1}) - \hat{\mathsf{E}}(Y^{0}) = \frac{1}{n} \left(\sum_{i} \frac{A_{i} Y_{i}}{\hat{\pi}_{i}} - \sum_{i} \frac{(1 - A_{i}) Y_{i}}{1 - \hat{\pi}_{i}} \right)$$

► Requires conditional exchangeability

IPW under network interference

► Modify to use exposure mapping (assume RCT)

$$\hat{E}(Y^{(a,e)}) = \frac{1}{N} \sum_{i:A_i = a, E_i = e} \frac{Y_i}{\mathbb{P}(A_i = a, E_i = e)}$$

$$\widehat{GATE} = \hat{E}(Y^{(1,1)}) - \hat{E}(Y^{(0,0)})$$

- Does not require anonymous interference, can use any exposure mapping
- ▶ Variance will depend on the exposure probabilities $\mathbb{P}(A_i = 1, E_i = \mathbf{1})$ and $\mathbb{P}(A_i = 0, E_i = \mathbf{0})$
- ▶ Observational studies are significantly more complex as we now need to care about the joint treatment probability distribution as it relates to the exposure levels

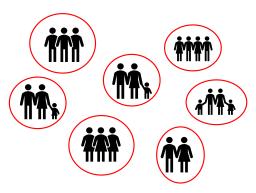
Variance of IPW estimator

$$\hat{E}(Y^{(a,e)}) = \frac{1}{N} \sum_{i:A_i=a,E_i=e} \frac{Y_i}{\mathbb{P}(A_i=a,E_i=e)}$$

- ▶ If exposure probabilities $\mathbb{P}(A_i = 1, E_i = 1)$ and $\mathbb{P}(A_i = 0, E_i = 0)$ are small, then any measurement noise in the outcomes will be amplified, leading to high variance
- ▶ Let D_i denote the number of neighbors (including i itself)
- ▶ Under independent treatment w/prob 0.5, exposure probability is exponential in D_i , i.e. $\mathbb{P}(A_i = 1, E_i = \mathbf{1}) = (0.5)^{D_i}$
- ► For $D_i = 5$, exposure prob is 0.000976, s.t. in a network of 1000 nodes, likely no units observed under full treatment
- Sophisticated clustered treatment assignments reduce variance by increasing probability of full treatment / control

Cluster Randomized Designs

- ► Initially motivated by networks consisting of many tightly connected households
- ► No interference edges across households
- ► Assign treatments to each household jointly
- ► If household treatment probability is 0.5, then full exposure probability is 0.5



Cluster Randomized Designs

- ► Can use clustering algorithms on general graphs
- ► Assign treatments to each cluster jointly
- ► If cluster treatment probability is 0.5, then full exposure probability is 0.5^(# neighboring clusters)



Learning goals for today

At the end of class, you will be able to

- ► Use model based regression to estimate global average treatment effect under interference
- ► Use inverse probability weighting (IPW) to estimate global average treatment effect with a given exposure mapping
- ► Explain the implications of the choice of randomized design on the variance of the estimator