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Learning goals for today

At the end of class, you will be able to

▶ Use model based regression to estimate global average
treatment effect under interference

▶ Use inverse probability weighting (IPW) to estimate global
average treatment effect with a given exposure mapping

▶ Explain the implications of the choice of randomized design
on the variance of the estimator
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Logistics

▶ Project Check-ins due Nov 25

▶ PSET 6 due Nov 25; Quiz 6 Dec 2
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Review of Network Interference

▶ Under interference the potential outcome of indiv i can
depend on the treatments of others as well

▶ Requires a change in notation to indicate the additional
dependence, e.g. Y a

i where a = (a1, a2, . . . an)

▶ Assume potential outcome Y a
i depends only on a only

through treatment ai and exposure level ei as given by
exposure mapping ei = fi (a), e.g. neighborhood interference,
anonymous interference
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Basic Solutions

▶ We will focus on estimating the Global Average Treatment
Effect from randomized control trials under the neighborhood
interference assumption

GATE =
1

n

n∑
i=1

(
Y

(1,1)
i − Y

(0,0)
i

)

▶ Two methods for estimation under exchangeability:
▶ Standardization & parametric g-formula with outcome model
▶ Inverse treatment probability weighted estimator

▶ Earliest solutions for interference modify these approaches to
estimate means under desired treatment and exposure levels
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Recap of using outcome modeling

▶ Learn a parametric model to predict expected outcome Y
given treatment and covariates

L A Y

▶ Estimate Y a
i using the learned model, Ê(Y | L = ℓi ,A = a)

▶ Average estimates over all units

Ê(Y a) =
1

n

∑
i

Ê(Y | L = ℓi ,A = a)

▶ Need L to be a sufficient adjustment set so that we have
conditional exchangeability

▶ Under RCT, don’t even need to condition on L
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Outcome Modeling under Network Interference

▶ Key Idea: Learn a parametric model to predict expected

outcome Y
(a,e)
i given treatment and exposure level

▶ Fit model to data {(Ai ,Ei ,Yi )}i∈[n]
▶ Typically requires anonymous interference where exposure

level is number or fraction of treated neighbors treated

▶ For every unit i , use the learned model to predict the outcome

under treatment a and exposure level e, denoted Ŷ
(a,e)
i

▶ Average over all units,

Ê(Y a,e) =
1

n

∑
i

Ŷ
(a,e)
i
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Outcome Modeling under Network Interference

▶ Linear models are most common, e.g. Yi = αAi + βEi + γ,
where Ei is fraction of treated neighbors

▶ Global Average Treatment Effect

ĜATE = 1
n

∑
i Ŷ

(1,1)
i − 1

n

∑
i Ŷ

(0,0)
i

= 1
n

∑
i (α̂+ β̂ + γ̂)− 1

n

∑
i γ̂ = α̂+ β̂

▶ Direct Average Treatment Effect

D̂ATE = 1
n

∑
i Ŷ

(1,0)
i − 1

n

∑
i Ŷ

(0,0)
i

= 1
n

∑
i (α̂+ γ̂)− 1

n

∑
i γ̂ = α̂

▶ Indirect Average Treatment Effect

ÎATE = 1
n

∑
i Ŷ

(0,1)
i − 1

n

∑
i Ŷ

(0,0)
i

= 1
n

∑
i (β̂ + γ̂)− 1

n

∑
i γ̂ = β̂
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Outcome Modeling under Network Interference

▶ What assumptions are needed?

▶ What is the relevant causal graph in the network setting?

▶ When do we need to think about adjusting for confounders?
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Outcome Modeling under Network Interference

▶ When could we still need to condition on covariates to get a
sufficient adjustment set even if treatments are randomized?

▶ E.g. let exposure level be fraction of treated neighbors, then
distribution of Ei depends on number of neighbors Di

0 1
𝑒

ℙ 𝐸 𝐷 = 1)

0 1
𝑒

ℙ 𝐸 𝐷 = 2)

0 1
𝑒

ℙ 𝐸 𝐷 = 3)

0 1
𝑒

ℙ 𝐸 𝐷 = 4)
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Outcome Modeling under Network Interference

▶ When could we still need to condition on covariates to get a
sufficient adjustment set even if treatments are randomized?

▶ E.g. let exposure level be fraction of treated neighbors, then
distribution of Ei depends on number of neighbors Di

▶ Number of neighbors Di affects outcome even when
conditioned on exposure level

𝑌

𝐸

Less social individuals

Highly social individuals
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Recap of Inverse probability of treatment weighting

▶ Estimate means by averaging the outcomes of units with
treatment Ai = a multiplied by the inverse of probability of
the treatment conditioned on covariates P(Ai = a | Li )

Ê(Y a) =
1

n

∑
i :Ai=a

Yi

P(Ai = a | Li )

▶ πi denotes probability that i is treated conditioned on its
covariates, s.t. P(Ai = 1|Li ) = πi and P(Ai = 0|Li ) = 1− πi

▶ Take difference of estimates for treated and control

Ê(Y 1)− Ê(Y 0) =
1

n

(∑
i

AiYi

π̂i
−
∑
i

(1− Ai )Yi

1− π̂i

)

▶ Requires conditional exchangeability
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IPW under network interference

▶ Modify to use exposure mapping (assume RCT)

Ê(Y (a,e)) =
1

N

∑
i :Ai=a,Ei=e

Yi

P(Ai = a,Ei = e)

ĜATE = Ê(Y (1,1))− Ê(Y (0,0))

▶ Does not require anonymous interference, can use any
exposure mapping

▶ Variance will depend on the exposure probabilities
P(Ai = 1,Ei = 1) and P(Ai = 0,Ei = 0)

▶ Observational studies are significantly more complex as we
now need to care about the joint treatment probability
distribution as it relates to the exposure levels
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Variance of IPW estimator

Ê(Y (a,e)) =
1

N

∑
i :Ai=a,Ei=e

Yi

P(Ai = a,Ei = e)

▶ If exposure probabilities P(Ai = 1,Ei = 1) and
P(Ai = 0,Ei = 0) are small, then any measurement noise in
the outcomes will be amplified, leading to high variance

▶ Let Di denote the number of neighbors (including i itself)

▶ Under independent treatment w/prob 0.5, exposure probability
is exponential in Di , i.e. P(Ai = 1,Ei = 1) = (0.5)Di

▶ For Di = 5, exposure prob is 0.000976, s.t. in a network of
1000 nodes, likely no units observed under full treatment

▶ Sophisticated clustered treatment assignments reduce variance
by increasing probability of full treatment / control
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Cluster Randomized Designs

▶ Initially motivated by networks consisting of many tightly
connected households

▶ No interference edges across households
▶ Assign treatments to each household jointly
▶ If household treatment probability is 0.5, then full exposure

probability is 0.5
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Cluster Randomized Designs

▶ Can use clustering algorithms on general graphs

▶ Assign treatments to each cluster jointly

▶ If cluster treatment probability is 0.5, then full exposure
probability is 0.5(# neighboring clusters)
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Learning goals for today

At the end of class, you will be able to

▶ Use model based regression to estimate global average
treatment effect under interference

▶ Use inverse probability weighting (IPW) to estimate global
average treatment effect with a given exposure mapping

▶ Explain the implications of the choice of randomized design
on the variance of the estimator
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