Difference in difference: Extensions

INFO/STSCI/ILRST 3900: Causal Inference

2 Nov 2023

Logistics

Logistics

- Problem set 5 extended to Sunday Nov 5 at 5pm
- Problem set 6 will be due Nov 16
- ► Final project writeup due Nov 21 5pm
 - summarize what the authors have done
 - propose a new quantity to estimate
 - ► 1,500-2,000 words total
- ► Final project presentations Nov 29 in discussion

Learning goals for today

At the end of class, you will be able to:

- 1. Use pre-treatment periods to
 - assess underlying assumptions
 - improve estimation accuracy
 - ▶ allow for a more flexible parallel trends assumption

2. and recognize that the parallel assumption remains untestable

Egami, N., & Yamauchi, S. (2023). Using multiple pretreatment periods to improve difference-in-differences and staggered adoption designs. Political Analysis, 31(2), 195-212.

Parallel Trends Assumption (untestable)

$$E(Y^{0}_{\text{Treated},2} - Y^{0}_{\text{Treated},1}) = \\E(Y^{0}_{\text{Control},2} - Y^{0}_{\text{Control},1})$$

Parallel Trends Assumption (untestable)

$$E(Y_{\text{Treated},2}^{0} - Y_{\text{Treated},1}^{0}) = E(Y_{\text{Control},2}^{0} - Y_{\text{Control},1}^{0})$$

Extended Parallel Trends (testable)

$$E(Y^{0}_{\text{Treated},1} - Y^{0}_{\text{Treated},0}) = \\E(Y^{0}_{\text{Control},1} - Y^{0}_{\text{Control},0})$$

Outcome 1 Education and cultural programs

Is there the following project in the commune?

Investment on culture and education

Outcome 2 Tap water

Is there the following project in the commune?

Coded 1

Indoor private piped water Outdoor private piped water Public piped water

Coded 0

Well water Well with protection walls Well without protection walls Stream water with protection Stream water without protection Rainwater Bottled water Water brought by pedicab Tank water river lake pond

Outcome 3 Agricultural center

Is there any agriculture extension center in this commune?

In each case, do you believe parallel trends?

In each case, do you believe parallel trends?

Table 2. Assessing underlying assumptions using the pretreatment outcomes.

	Estimate	Std. error	<i>p</i> -value	95% Std. equivalence CI
Education and cultural program	-0.007	0.096	0.940	[-0.166,0.166]
Tap water	0.166	0.083	0.045	[-0.302,0.302]
Agricultural center	0.198	0.082	0.015	[-0.332,0.332]

Benefit 1: Assessing assumptions

Pre-treatment periods enable us to assess underlying ssumptions

Parallel trends is untestable, but being parallel in the pre-treatment period builds confidence

Pre-treatment periods also enable us to **improve estimation accuracy** when parallel trends holds

Estimator 1

Estimator 2

Notation

Y^{treatment} value (unit)(time)

Estimator 1

l

Ś

$$\underline{\bar{Y}_{T2}^{1} - \bar{Y}_{T1}^{0}} - \underbrace{(\bar{Y}_{C2}^{0} - \bar{Y}_{C1}^{0})}_{\underline{}}$$

Treatment Group Time 2 - Time 1

Control Group Time 2 - Time 1

Estimator 2

Notation

Y^{treatment value} (unit)(time)

Estimator 1

$$\underbrace{\left(\bar{Y}_{T2}^{1}-\bar{Y}_{T1}^{0}\right)}_{\left(\bar{Y}_{C2}^{0}-\bar{Y}_{C1}^{0}\right)}-\underbrace{\left(\bar{Y}_{C2}^{0}-\bar{Y}_{C1}^{0}\right)}_{\left(\bar{Y}_{C2}^{0}-\bar{Y}_{C1}^{0}\right)}$$

Treatment Group Time 2 - Time 1

Control Group Time 2 - Time 1

Estimator 2

Treatment Group Control Group Time 2 - Time 0

Time 2 - Time 0

Notation

 \mathbf{v} treatment value (unit)(time)

Estimator 1

$$\underbrace{\left(\bar{Y}_{T2}^{1}-\bar{Y}_{T1}^{0}\right)}_{\left(\bar{Y}_{C2}^{0}-\bar{Y}_{C1}^{0}\right)}-\underbrace{\left(\bar{Y}_{C2}^{0}-\bar{Y}_{C1}^{0}\right)}_{\left(\bar{Y}_{C2}^{0}-\bar{Y}_{C1}^{0}\right)}$$

Treatment Group Time 2 - Time 1

Control Group Time 2 - Time 1

Estimator 2

Treatment Group Control Group Time 2 - Time 0

Time 2 - Time 0

Notation

✓treatment value (unit)(time)

Pooled estimator: Average the two!

Pre-treatment periods make it possible to allow for a more flexible parallel trends assumption

Parallel Trends-in-Trends $\overbrace{t \doteq 0 \qquad t \doteq 1 \qquad t \doteq 2 \\ (before) \qquad (before) \qquad (after)}^{t \doteq 0}$ Trend of Treatment Group (-2, -1)Trend of Group (-3.5, -2.5) ASSUMPTION 3 (Parallel Trends-in-Trends)

$$\underbrace{\{\mathbb{E}[Y_{12}(0) \mid G_i = 1] - \mathbb{E}[Y_{11}(0) \mid G_i = 1]\}}_{\text{Trend of the treatment group from }t=1 \text{ to }t=2} \underbrace{\{\mathbb{E}[Y_{11}(0) \mid G_i = 1] - \mathbb{E}[Y_{01}(0) \mid G_i = 1]\}}_{\text{Trend of the treatment group from }t=0 \text{ to }t=1} \\ = \underbrace{\{\mathbb{E}[Y_{12}(0) \mid G_i = 0] - \mathbb{E}[Y_{11}(0) \mid G_i = 0]\}}_{\text{Trend of the control group from }t=1 \text{ to }t=2} \underbrace{\{\mathbb{E}[Y_{11}(0) \mid G_i = 0] - \mathbb{E}[Y_{01}(0) \mid G_i = 0]\}}_{\text{Trend of the control group from }t=1 \text{ to }t=2} \underbrace{\{\mathbb{E}[Y_{11}(0) \mid G_i = 0] - \mathbb{E}[Y_{01}(0) \mid G_i = 0]\}}_{\text{Trend of the control group from }t=0 \text{ to }t=1} \underbrace{\{\mathbb{E}[Y_{12}(0) \mid G_i = 0] - \mathbb{E}[Y_{01}(0) \mid G_i = 0]\}}_{\text{Trend of the control group from }t=1 \text{ to }t=2} \underbrace{\{\mathbb{E}[Y_{12}(0) \mid G_i = 0] - \mathbb{E}[Y_{12}(0) \mid G_i = 0]\}}_{\text{Trend of the control group from }t=0 \text{ to }t=1} \underbrace{\{\mathbb{E}[Y_{12}(0) \mid G_i = 0] - \mathbb{E}[Y_{12}(0) \mid G_i = 0]\}}_{\text{Trend of the control group from }t=0 \text{ to }t=1} \underbrace{\{\mathbb{E}[Y_{12}(0) \mid G_i = 0] - \mathbb{E}[Y_{12}(0) \mid G_i = 0]\}}_{\text{Trend of the control group from }t=1} \underbrace{\{\mathbb{E}[Y_{12}(0) \mid G_i = 0] - \mathbb{E}[Y_{12}(0) \mid G_i = 0]\}}_{\text{Trend of the control group from }t=1} \underbrace{\{\mathbb{E}[Y_{12}(0) \mid G_i = 0] - \mathbb{E}[Y_{12}(0) \mid G_i = 0]\}}_{\text{Trend of the control group from }t=1} \underbrace{\{\mathbb{E}[Y_{12}(0) \mid G_i = 0] - \mathbb{E}[Y_{12}(0) \mid G_i = 0]\}}_{\text{Trend of the control group from }t=0} \underbrace{\{\mathbb{E}[Y_{12}(0) \mid G_i = 0] - \mathbb{E}[Y_{12}(0) \mid G_i = 0]}_{\text{Trend of the control group from }t=1} \underbrace{\{\mathbb{E}[Y_{12}(0) \mid G_i = 0] - \mathbb{E}[Y_{12}(0) \mid G_i = 0]}_{\text{Trend of the control group from }t=0} \underbrace{\{\mathbb{E}[Y_{12}(0) \mid G_i = 0]}_{\text{Trend of the control group from }t=0} \underbrace{\{\mathbb{E}[Y_{12}(0) \mid G_i = 0]}_{\text{Trend of the control group from }t=0} \underbrace{\{\mathbb{E}[Y_{12}(0) \mid G_i = 0]}_{\text{Trend of the control group from }t=0} \underbrace{\{\mathbb{E}[Y_{12}(0) \mid G_i = 0]}_{\text{Trend of the control group from }t=0} \underbrace{\{\mathbb{E}[Y_{12}(0) \mid G_i = 0]}_{\text{Trend of the control group from }t=0} \underbrace{\{\mathbb{E}[Y_{12}(0) \mid G_i = 0]}_{\text{Trend of the control group from }t=0} \underbrace{\{\mathbb{E}[Y_{12}(0) \mid G_i = 0]}_{\text{Trend of the control group from }t=0} \underbrace{\{\mathbb{E}[Y_{12}(0) \mid G_i = 0]}_{\text{Trend of the contro$$

ASSUMPTION 3 (Parallel Trends-in-Trends)

$$\begin{split} \underbrace{\left\{ \mathbb{E}[Y_{12}(0) \mid G_i = 1] - \mathbb{E}[Y_{11}(0) \mid G_i = 1] \right\}}_{\text{Trend of the treatment group from }t=1 \text{ to }t=2} \underbrace{\left\{ \mathbb{E}[Y_{11}(0) \mid G_i = 1] - \mathbb{E}[Y_{01}(0) \mid G_i = 1] \right\}}_{\text{Trend of the treatment group from }t=0 \text{ to }t=1} \\ = \underbrace{\left\{ \mathbb{E}[Y_{12}(0) \mid G_i = 0] - \mathbb{E}[Y_{11}(0) \mid G_i = 0] \right\}}_{\text{Trend of the control group from }t=1 \text{ to }t=2} \underbrace{\left\{ \mathbb{E}[Y_{11}(0) \mid G_i = 0] - \mathbb{E}[Y_{01}(0) \mid G_i = 0] \right\}}_{\text{Trend of the control group from }t=1 \text{ to }t=2} \\ \end{split}$$

Sequential DID Estimator

$$\begin{aligned} \widehat{\tau}_{\text{a-DID}} &= \left\{ \left(\frac{\sum_{i:\;G_i=1}Y_{i2}}{n_{12}} - \frac{\sum_{i:\;G_i=1}Y_{i1}}{n_{11}} \right) - \left(\frac{\sum_{i:\;G_i=0}Y_{i2}}{n_{02}} - \frac{\sum_{i:\;G_i=0}Y_{i1}}{n_{01}} \right) \right\} \\ &- \left\{ \left(\frac{\sum_{i:\;G_i=1}Y_{i1}}{n_{11}} - \frac{\sum_{i:\;G_i=1}Y_{i0}}{n_{10}} \right) - \left(\frac{\sum_{i:\;G_i=0}Y_{i1}}{n_{01}} - \frac{\sum_{i:\;G_i=0}Y_{i0}}{n_{00}} \right) \right\}, \end{aligned}$$

Benefits of multiple pre-treatment periods

- 1. assess underlying assumptions
- 2. improve estimation accuracy
- 3. allow for a more flexible parallel trends assumption

Benefits of multiple pre-treatment periods

- 1. assess underlying assumptions
- 2. improve estimation accuracy
- 3. allow for a more flexible parallel trends assumption

Benefits of multiple pre-treatment periods

- 1. assess underlying assumptions
- 2. improve estimation accuracy
- 3. allow for a more flexible parallel trends assumption

Learning goals for today

At the end of class, you will be able to:

- 1. Use pre-treatment periods to
 - assess underlying assumptions
 - improve estimation accuracy
 - ▶ allow for a more flexible parallel trends assumption

2. and recognize that the parallel assumption remains untestable