Front door identification

INFO/STSCI/ILRST 3900: Causal Inference

12 Oct 2023

Logistics

- Problem Set 4 due Oct 19
- ► Form for final project groups
 - ► Writeup due Nov 21
 - Presentations Nov 29

Quick review: Where we are

define a causal effect

▶ treatment, outcome, potential outcomes, target population

► identify a causal effect

- maps a causal quantity (involving counterfactuals) to a statistical quantity (involving only factual variables)
- DAGs, conditional exchangeability

estimate a causal effect

statistical modeling, matching, regression

Learning goals for today

At the end of class you will be able to

explain front-door causal identification

More broadly,

- 1. engage with a new causal identification approach
- 2. translate that method to code
- 3. critique the identification assumptions

1) Engage with a new causal identification approach

Sometimes a sufficient adjustment set does not exist

Imagine you are Taylor Swift's head of advertising

Does having a ticket for the Eras Tour increase the probability that a fan look for a future ticket?

As head of advertising, how could you learn about $A \rightarrow Y$?

As head of advertising, how could you learn about $A \rightarrow Y$?

■8 / 15

As head of advertising, how could you learn about $A \rightarrow Y$?

U $\swarrow M \to Y$ A

1) $A \rightarrow M$ is identified

1) $A \rightarrow M$ is identified $P(M^a) =$

for *a* = 1: would attend if given a ticket?

U V

had ticket attended looking for new ticket

1) $A \rightarrow M$ is identified $P(M^a) = P(M \mid A = a)$

for *a* = 1: would attend if given a ticket? attendance rate among those with tickets

1)
$$A \rightarrow M$$
 is identified
 $P(M^a) = P(M \mid A = a)$

attendance rate among those with tickets

U Y

had ticket attended looking for new ticket

2) $M \rightarrow Y$ is identified

1)
$$A \rightarrow M$$
 is identified
 $P(M^a) = P(M \mid A = a)$

for a = 1: would attend if given a ticket?

attendance rate among those with tickets

U Y

had ticket attended looking for new ticket

2) $M \to Y$ is identified P(Y^m)

for m = 1: would look for new ticket if attended?

1)
$$A \rightarrow M$$
 is identified
 $P(M^a) = P(M \mid A = a)$

attendance rate among those with tickets

had ticket attended looking for new ticket

2) $M \rightarrow Y$ is identified $P(Y^m) = \sum_{a'} P(A = a')P(Y \mid M = m, A = a')$

for m = 1: would look for new ticket if attended? weighted sum over having ticket looking for new ticket given attendance?

1)
$$A \rightarrow M$$
 is identified
 $P(M^a) = P(M \mid A = a)$

attendance rate among those with tickets

had ticket attended looking for new ticket

2) $M \rightarrow Y$ is identified $P(Y^m) = \sum_{a'} P(A = a')P(Y \mid M = m, A = a')$

for m = 1: would look for new ticket if attended? weighted sum over having ticket looking for new ticket given attendance?

3) $A \rightarrow Y$ operates through M

1)
$$A \rightarrow M$$
 is identified
 $P(M^a) = P(M \mid A = a)$

attendance rate among those with tickets

U

had ticket attended looking for new ticket

2) $M \rightarrow Y$ is identified $P(Y^m) = \sum_{a'} P(A = a')P(Y \mid M = m, A = a')$

for m = 1: would look for new ticket if attended? weighted sum over having ticket looking for new ticket given attendance?

3) $A \rightarrow Y$ operates through M $P(Y^a) =$

for *a* = 1: would look for future ticket if given ticket?

1)
$$A \rightarrow M$$
 is identified
 $P(M^a) = P(M \mid A = a)$

attendance rate among those with tickets

had ticket attended looking for new ticket

2) $M \rightarrow Y$ is identified $P(Y^m) = \sum_{a'} P(A = a')P(Y \mid M = m, A = a')$

for m = 1: would look for new ticket if attended? weighted sum over having ticket looking for new ticket given attendance?

3) $A \to Y$ operates through M $P(Y^a) = P(Y^{M^a})$

for a = 1: would look for would look for future ticket if future ticket if attended as if given ticket? given ticket?

9 / 15

1)
$$P(M^a = m) = P(M | A = a)$$

2)
$$P(Y^m) = \sum_{a'} P(A = a') P(Y \mid M = m, A = a')$$

$$A \xrightarrow{U} M \xrightarrow{V} Y$$

3)
$$P(Y^a) = P(Y^{M^a})$$

1)
$$P(M^{a} = m) = P(M | A = a)$$

2) $P(Y^{m}) = \sum_{a'} P(A = a')P(Y | M = m, A = a')$
3) $P(Y^{a}) = P(Y^{M^{a}})$

$$A \xrightarrow{U} M \xrightarrow{} Y$$

had ticket attended looking for new ticket

Proof

$$P(Y^{a}) = P(Y^{M^{a}})$$
 by (3)

$$= \sum_{m} P(M^{a} = m)P(Y^{m})$$
 law of total prob.

$$= \sum_{m} P(M = m \mid A = a)P(Y^{m})$$
 by (1)

$$= \sum_{m} \left(P(M = m \mid A = a) \times \sum_{a'} P(A = a')P(Y \mid M = m, A = a') \right)$$
 by (2)

9/15

1)
$$P(M^{a} = m) = P(M | A = a)$$

2) $P(Y^{m}) = \sum_{a'} P(A = a')P(Y | M = m, A = a')$
3) $P(Y^{a}) = P(Y^{M^{a}})$

$$A \xrightarrow{U} M \xrightarrow{} Y$$

had ticket attended looking for new ticket

Result

$$\mathsf{P}(Y^a) = \sum_{m} \mathsf{P}(M = m \mid A = a) \sum_{a'} \mathsf{P}(A = a') \mathsf{P}(Y \mid M = m, A = a')$$

1)
$$P(M^{a} = m) = P(M | A = a)$$

2) $P(Y^{m}) = \sum_{a'} P(A = a')P(Y | M = m, A = a')$

$$A \xrightarrow{U} M \xrightarrow{} Y$$

had ticket attended looking for new ticket

Result

3) $P(Y^{a}) = P(Y^{M^{a}})$

$$P(Y^{a}) = \sum_{m} P(M = m \mid A = a) \sum_{a'} P(A = a') P(Y \mid M = m, A = a')$$

If we intervene to set treatment to the value *a* then your outcome is a weighted average over the M distribution that would result

of the outcome under M = m, identified by backdoor adjustment for A

2) Translate to code

$$P(Y^{a}) = \sum_{m} P(M = m | A = a) \sum_{a'} P(A = a') P(Y | M = m, A = a')$$

$$P(Y^{a}) = \sum_{m} P(M = m \mid A = a) \sum_{a'} P(A = a') P(Y \mid M = m, A = a')$$

$$P(Y^{a}) = \sum_{m} P(M = m \mid A = a) \sum_{a'} P(A = a') P(Y \mid M = m, A = a')$$

Probability of each A
p_A <- data %>%
 # Count size of each group
 group_by(A) %>%
 count() %>%
 # Convert to probability
 ungroup() %>%
 mutate(p_A = n / sum(n)) %>%
 select(A,p_A)

$$P(Y^{a}) = \sum_{m} P(M = m \mid A = a) \sum_{a'} P(A = a') P(Y \mid M = m, A = a')$$

$$P(Y^{a}) = \sum_{m} P(M = m | A = a) \sum_{a'} P(A = a') P(Y | M = m, A = a')$$

$$P(Y^{a}) = \sum_{m} P(M = m \mid A = a) \sum_{a'} P(A = a') P(Y \mid M = m, A = a')$$

$$P(Y^{a}) = \sum_{m} P(M = m \mid A = a) \sum_{a'} P(A = a') P(Y \mid M = m, A = a')$$

Probability of Y = 1 under intervention on M
p_Y_under_M <- p_Y_given_M_A %>%
 left_join(p_A, by = "A") %>%
 group_by(M) %>%
 summarize(p_Y_under_M = sum(P_Y_given_A_M * p_A))

$$P(Y^{a}) = \sum_{m} P(M = m | A = a) \sum_{a'} P(A = a') P(Y | M = m, A = a')$$

$$P(Y^{a}) = \sum_{m} P(M = m | A = a) \sum_{a'} P(A = a') P(Y | M = m, A = a')$$

Probability of each M given A
p_M_given_A <- data %>%
 # Count size of each group
 group_by(A, M) %>%
 count() %>%
 # Convert to probability within A
 group_by(A) %>%
 mutate(p_M_under_A = n / sum(n)) %>%
 select(A,M,p_M_under_A)

$$P(Y^{a}) = \sum_{m} P(M = m \mid A = a) \sum_{a'} P(A = a') P(Y \mid M = m, A = a')$$

Goal 3) Critique the identification assumptions

What edges might need to be added to this DAG?

What edges might need to be added to this DAG?

What edges might need to be added to this DAG?

Resources

- Pearl, J. (1995). Causal diagrams for empirical research. Biometrika, 82(4), 669-688.
- Glynn, A. N., & Kashin, K. (2018). Front-door versus back-door adjustment with unmeasured confounding: Bias formulas for front-door and hybrid adjustments with application to a job training program. Journal of the American Statistical Association, 113(523), 1040-1049.

Learning goals for today

At the end of class you will be able to

explain front-door causal identification

More broadly,

- 1. engage with a new causal identification approach
- 2. translate that method to code
- 3. critique the identification assumptions