Parametric g-Formula

Cornell STSCI / INFO / ILRST 3900 Fall 2023 causal3900.github.io

28 Sep 2023

Learning goals for today

At the end of class, you will be able to

estimate average causal effects with a parametric model

- for the outcome $E(Y | A, \vec{L})$
- for the treatment $P(A \mid \vec{L})$

After class:

▶ Hernán and Robins 2020 Chapter 12.1–12.5, 13, 15.1

Nonparametric estimation

Causal assumptions

Nonparametric estimator

$$\widehat{\mathsf{E}}(Y^{a}) = \frac{1}{n} \sum_{i=1}^{n} \widehat{\mathsf{E}}(Y \mid \vec{L} = \vec{\ell}_{i}, A = a)$$

Nonparametric estimation

Causal assumptions

Nonparametric estimator

$$\widehat{\mathsf{E}}(Y^{a}) = \frac{1}{n} \sum_{i=1}^{n} \widehat{\mathsf{E}}(Y \mid \vec{L} = \vec{\ell}_{i}, A = a)$$

For every unit *i*,

- find units who look like them on confounders \vec{L}
- who actually got treatment A = a
- take the average among those units

Then average over all units

Nonparametric estimation breaks down

Nonparametric estimation breaks down

No Coli

No Coli

No Colle

No Colleg

....

No Colle

His	Non-His	
No College	No College	No College
No College	No College	No College
No College	No College	No College
No College	No College	No College
College	No College	No College
Seleço No Colege	No College	No College
No College	No College	No College
No College	Dellege No College	No College
No College	College No College	No College
No College	Role No College	- mole
No College	No College	No College
No College	No College	No College
No College	No College	No College
Color	No.Colecce	College
No College	No College	
Color	Calige	no compe
	No College	No College
No College		No comps
Colege	No Longe	No College Dollarge
No College	No College	No College
No College	No Lolege	No College
College		
No College	No College	No College
No College College	College	No College College
No College	No College	No College

Non-Hispanic Non-Black					
pe .	No College No College	No dad	No mom		
	No College No College	< HS	No mom		
	No College No College	High school	No mom		
ilege	No College No College	Some college	No mom		
	No College No College	College	No mom		
	No College No College	No dad	< HS		
_	No College No College	< HS	< HS		
	No College No College	High school	< HS		
	No College No College	Some college	< HS		
	Colege No Colege	College	< HS		
	No College No College	No dad	High school		
	No College No College	< HS	High school		
•	No College No College	High school	High school		
	No College No College	Some college	High school		
	College College No College No College	College	High school		
	No College No College	No dad	Some colleg		
	No College No College	< HS	Some colleg		
	No College No College	High school	Some colleg		
	No College No College	Some college	Some colleg		
	College College No College	College	Some colleg		
	- College - No College	No dad	College		
	No College No College	< HS	College		
	No College No College	High school	College		
	ColegeNo Colege	Some college	College		
u 9	College College	College	College		

Parametric estimation: Outcome model

Causal assumptions

$$\vec{L} \xrightarrow{A \to Y} Y$$

Parametric estimator

$$\widehat{\mathsf{E}}(Y^{\mathsf{a}}) = \frac{1}{n} \sum_{i=1}^{n} \widehat{\mathsf{E}}(Y \mid \vec{L} = \vec{\ell}_i, A = \mathsf{a})$$

Parametric estimation: Outcome model

Causal assumptions

$$\vec{L} \xrightarrow{A \to Y} Y$$

Parametric estimator

$$\widehat{\mathsf{E}}(Y^{\mathsf{a}}) = \frac{1}{n} \sum_{i=1}^{n} \widehat{\mathsf{E}}(Y \mid \vec{L} = \vec{\ell}_i, A = \mathsf{a})$$

First, learn a model to predict Y given \vec{L} and A

$$\hat{\mathsf{E}}(Y \mid \vec{L}, A) = \hat{\alpha} + \vec{L}' \hat{\vec{\gamma}} + A \hat{\beta}$$

Parametric estimation: Outcome model

Causal assumptions

$$\vec{L} \xrightarrow{A \to Y} Y$$

Parametric estimator

$$\widehat{\mathsf{E}}(Y^{a}) = \frac{1}{n} \sum_{i=1}^{n} \widehat{\mathsf{E}}(Y \mid \vec{L} = \vec{\ell}_{i}, A = a)$$

First, learn a model to predict Y given \vec{L} and A

$$\hat{\mathsf{E}}(Y \mid \vec{L}, A) = \hat{\alpha} + \vec{L}' \hat{\vec{\gamma}} + A \hat{\beta}$$

For every unit *i*,

- change the treatment value to a
- predict the outcome

Then average over all units

$$\hat{\mathsf{E}}(Y^{1}) - \hat{\mathsf{E}}(Y^{0}) = \left(\frac{1}{n}\sum_{i=1}^{n} \left(\hat{\alpha} + \hat{\gamma}\ell_{i} + \hat{\beta} \times 1\right)\right) - \left(\frac{1}{n}\sum_{i=1}^{n} \left(\hat{\alpha} + \hat{\gamma}\ell_{i} + \hat{\beta} \times 0\right)\right)$$

$$\hat{\mathsf{E}}(Y^{1}) - \hat{\mathsf{E}}(Y^{0}) = \left(\frac{1}{n}\sum_{i=1}^{n} \left(\hat{\alpha} + \hat{\gamma}\ell_{i} + \hat{\beta} \times 1\right)\right)$$
$$- \left(\frac{1}{n}\sum_{i=1}^{n} \left(\hat{\alpha} + \hat{\gamma}\ell_{i} + \hat{\beta} \times 0\right)\right)$$
$$= \frac{1}{n}\sum_{i=1}^{n}\hat{\beta}$$

$$\hat{\mathsf{E}}(Y^{1}) - \hat{\mathsf{E}}(Y^{0}) = \left(\frac{1}{n}\sum_{i=1}^{n} \left(\hat{\alpha} + \hat{\gamma}\ell_{i} + \hat{\beta} \times 1\right)\right)$$
$$-\left(\frac{1}{n}\sum_{i=1}^{n} \left(\hat{\alpha} + \hat{\gamma}\ell_{i} + \hat{\beta} \times 0\right)\right)$$
$$= \frac{1}{n}\sum_{i=1}^{n}\hat{\beta}$$
$$= \hat{\beta}$$

Estimator for the effect $E(Y^1) - E(Y^0)$:

$$\hat{\mathsf{E}}(\mathsf{Y}^{1}) - \hat{\mathsf{E}}(\mathsf{Y}^{0}) = \left(\frac{1}{n}\sum_{i=1}^{n} \left(\hat{\alpha} + \hat{\gamma}\ell_{i} + \hat{\beta} \times 1\right)\right)$$
$$- \left(\frac{1}{n}\sum_{i=1}^{n} \left(\hat{\alpha} + \hat{\gamma}\ell_{i} + \hat{\beta} \times 0\right)\right)$$
$$= \frac{1}{n}\sum_{i=1}^{n}\hat{\beta}$$
$$= \hat{\beta}$$

With OLS, the parametric g-formula collapses on the coefficient.

The parametric g-formula is more general

Suppose the effect of A depends on L

$$\mathsf{E}(Y \mid A, L) = \alpha + \gamma L + \beta A + \eta A L$$

The parametric g-formula is more general

Suppose the effect of A depends on L

$$\mathsf{E}(Y \mid A, L) = \alpha + \gamma L + \beta A + \eta A L$$

$$\hat{\mathsf{E}}(Y^{1}) - \hat{\mathsf{E}}(Y^{0}) = \left(\frac{1}{n}\sum_{i=1}^{n} \left(\hat{\alpha} + \hat{\gamma}\ell_{i} + \hat{\beta} \times 1 + \hat{\eta} \times 1 \times \ell_{i}\right)\right)$$
$$- \left(\frac{1}{n}\sum_{i=1}^{n} \left(\hat{\alpha} + \hat{\gamma}\ell_{i} + \hat{\beta} \times 0 + \hat{\eta} \times 0 \times \ell_{i}\right)\right)$$

The parametric g-formula is more general

Suppose the effect of A depends on L

$$\mathsf{E}(Y \mid A, L) = \alpha + \gamma L + \beta A + \eta A L$$

Estimator for the effect $E(Y^1) - E(Y^0)$:

$$\begin{split} \hat{\mathsf{E}}(Y^{1}) - \hat{\mathsf{E}}(Y^{0}) &= \left(\frac{1}{n} \sum_{i=1}^{n} \left(\hat{\alpha} + \hat{\gamma}\ell_{i} + \hat{\beta} \times 1 + \hat{\eta} \times 1 \times \ell_{i}\right)\right) \\ &- \left(\frac{1}{n} \sum_{i=1}^{n} \left(\hat{\alpha} + \hat{\gamma}\ell_{i} + \hat{\beta} \times 0 + \hat{\eta} \times 0 \times \ell_{i}\right)\right) \\ &= \frac{1}{n} \sum_{i=1}^{n} \left(\hat{\beta} + \hat{\eta}\ell_{i}\right) \end{split}$$

The g-formula no longer collapses to a coefficient!

Parametric g-formula: Outcome model recap

- 1. Model the outcome mean $E(Y \mid A, \vec{L})$
- 2. Change everyone's treatment to the value of interest
- 3. Predict for everyone
- 4. Take the average

$$\widehat{\mathsf{E}}(Y^{a}) = \frac{1}{n} \sum_{i=1}^{n} \widehat{\mathsf{E}}(Y \mid \vec{L} = \vec{\ell}_{i}, A = a)$$

 $\vec{L} \xrightarrow{A \to Y}$

Propensity score:
$$\pi_i = P(A = A_i | L = L_i)$$

Propensity score: $\pi_i = \mathsf{P}(A = A_i \mid L = L_i)$ Inverse probability weight: $w_i = \frac{1}{\pi_i}$

Propensity score:
$$\pi_i = \mathsf{P}(A = A_i \mid L = L_i)$$

Inverse probability weight: $w_i = \frac{1}{\pi_i}$

Propensity score: $\pi_i =$ Inverse probability weight: $w_i =$

$$\pi_i = \mathsf{P}(A = A_i \mid L = L_i)$$
$$w_i = \frac{1}{\pi_i}$$

 L_1

Model the treatment assignment

$$\hat{\mathsf{P}}(\mathsf{A}=1\midec{\mathcal{L}})=\mathsf{logit}^{-1}\left(\hat{lpha}+\hat{ec{\gamma}}ec{\mathcal{L}}
ight)$$

Predict the propensity score for each unit

$$\hat{\pi}_{i} = \begin{cases} \operatorname{logit}^{-1} \left(\hat{\alpha} + \hat{\vec{\gamma}} \vec{L} \right) & \text{if } A_{i} = 1\\ 1 - \operatorname{logit}^{-1} \left(\hat{\alpha} + \hat{\vec{\gamma}} \vec{L} \right) & \text{if } A_{i} = 0 \end{cases}$$

Estimate by inverse probability weighting

$$\hat{\mathsf{E}}(Y^{a}) = \frac{1}{N} \sum_{i:A_{i}=a} \frac{Y_{i}}{\hat{\pi}_{i}}$$

Learning goals for today

At the end of class, you will be able to

estimate average causal effects with a parametric model

- for the outcome $E(Y | A, \vec{L})$
- for the treatment $P(A \mid \vec{L})$

After class:

▶ Hernán and Robins 2020 Chapter 12.1–12.5, 13, 15.1

Suppose a stratum $\vec{L} = \vec{\ell}$ contains

- ► 100 untreated units
- ▶ 1 treated unit

Suppose a stratum $\vec{L} = \vec{\ell}$ contains

- ► 100 untreated units
- ▶ 1 treated unit

The treated unit gets a weight of 100.

Suppose a stratum $\vec{L} = \vec{\ell}$ contains

- ► 100 untreated units
- ▶ 1 treated unit

The treated unit gets a weight of 100.

The estimate depends heavily on which treated unit happens to be included in the sample \to high-variance estimator

Suppose a stratum $\vec{L} = \vec{\ell}$ contains

- ► 100 untreated units
- ▶ 1 treated unit

The treated unit gets a weight of 100.

The estimate depends heavily on which treated unit happens to be included in the sample \to high-variance estimator

Two solutions

- 1. Trim the weights
- 2. Truncate the weights

Suppose a stratum $\vec{L} = \vec{\ell}$ contains

- ► 100 untreated units
- ▶ 1 treated unit

The treated unit gets a weight of 100.

The estimate depends heavily on which treated unit happens to be included in the sample \to high-variance estimator

Two solutions

- 1. Trim the weights
- 2. Truncate the weights

Both solutions accept bias in order to reduce variance

Drop units with extreme weights

Drop units with extreme weights

Drop units with extreme weights

Changes target population — Biased for full population

Truncate values of extreme weights

Truncate values of extreme weights

Truncate values of extreme weights

Biased: Ignores some confounding