Parametric g-Formula

Cornell STSCI / INFO / ILRST 3900
Fall 2023
causal3900.github.io

28 Sep 2023

Learning goals for today

At the end of class, you will be able to

- estimate average causal effects with a parametric model
- for the outcome $\mathrm{E}(Y \mid A, \vec{L})$
- for the treatment $\mathrm{P}(A \mid \vec{L})$

After class:

- Hernán and Robins 2020 Chapter 12.1-12.5, 13, 15.1

Nonparametric estimation

Causal assumptions

Nonparametric estimator

$$
\hat{\mathrm{E}}\left(Y^{a}\right)=\frac{1}{n} \sum_{i=1}^{n} \hat{\mathrm{E}}\left(Y \mid \vec{L}=\vec{\ell}_{i}, A=a\right)
$$

Nonparametric estimation

Causal assumptions

Nonparametric estimator

$$
\hat{\mathrm{E}}\left(Y^{a}\right)=\frac{1}{n} \sum_{i=1}^{n} \hat{\mathrm{E}}\left(Y \mid \vec{L}=\vec{\ell}_{i}, A=a\right)
$$

For every unit i,

- find units who look like them on confounders \vec{L}
- who actually got treatment $A=a$
- take the average among those units

Then average over all units

Nonparametric estimation breaks down

Nonparametric estimation breaks down

Parametric estimation: Outcome model

Causal assumptions

Parametric estimator

$$
\hat{\mathrm{E}}\left(Y^{a}\right)=\frac{1}{n} \sum_{i=1}^{n} \hat{\mathrm{E}}\left(Y \mid \vec{L}=\vec{\ell}_{i}, A=a\right)
$$

Parametric estimation: Outcome model

Causal assumptions

Parametric estimator

$$
\hat{\mathrm{E}}\left(Y^{a}\right)=\frac{1}{n} \sum_{i=1}^{n} \hat{\mathrm{E}}\left(Y \mid \vec{L}=\vec{\ell}_{i}, A=a\right)
$$

First, learn a model to predict Y given \vec{L} and A

$$
\hat{E}(Y \mid \vec{L}, A)=\hat{\alpha}+\vec{L}^{\prime} \hat{\vec{\gamma}}+A \hat{\beta}
$$

Parametric estimation: Outcome model

Causal assumptions

Parametric estimator

$$
\hat{\mathrm{E}}\left(Y^{a}\right)=\frac{1}{n} \sum_{i=1}^{n} \hat{\mathrm{E}}\left(Y \mid \vec{L}=\vec{\ell}_{i}, A=a\right)
$$

First, learn a model to predict Y given \vec{L} and A

$$
\hat{E}(Y \mid \vec{L}, A)=\hat{\alpha}+\vec{L}^{\prime} \hat{\vec{\gamma}}+A \hat{\beta}
$$

For every unit i,

- change the treatment value to a
- predict the outcome

Then average over all units

The parametric g-formula: Connection to $\hat{\beta}$

The parametric g-formula: Connection to $\hat{\beta}$

Estimator for the effect $\mathrm{E}\left(Y^{1}\right)-\mathrm{E}\left(Y^{0}\right)$:

The parametric g-formula: Connection to $\hat{\beta}$

Estimator for the effect $\mathrm{E}\left(Y^{1}\right)-\mathrm{E}\left(Y^{0}\right)$:

$$
\begin{aligned}
\hat{\mathrm{E}}\left(Y^{1}\right)-\hat{\mathrm{E}}\left(Y^{0}\right)=(& \left.\frac{1}{n} \sum_{i=1}^{n}\left(\hat{\alpha}+\hat{\gamma} \ell_{i}+\hat{\beta} \times 1\right)\right) \\
& -\left(\frac{1}{n} \sum_{i=1}^{n}\left(\hat{\alpha}+\hat{\gamma} \ell_{i}+\hat{\beta} \times 0\right)\right)
\end{aligned}
$$

The parametric g-formula: Connection to $\hat{\beta}$

Estimator for the effect $\mathrm{E}\left(Y^{1}\right)-\mathrm{E}\left(Y^{0}\right)$:

$$
\begin{aligned}
\hat{\mathrm{E}}\left(Y^{1}\right)-\hat{\mathrm{E}}\left(Y^{0}\right)= & \left(\frac{1}{n} \sum_{i=1}^{n}\left(\hat{\alpha}+\hat{\gamma} \ell_{i}+\hat{\beta} \times 1\right)\right) \\
& -\left(\frac{1}{n} \sum_{i=1}^{n}\left(\hat{\alpha}+\hat{\gamma} \ell_{i}+\hat{\beta} \times 0\right)\right) \\
= & \frac{1}{n} \sum_{i=1}^{n} \hat{\beta}
\end{aligned}
$$

The parametric g-formula: Connection to $\hat{\beta}$

Estimator for the effect $\mathrm{E}\left(Y^{1}\right)-\mathrm{E}\left(Y^{0}\right)$:

$$
\begin{aligned}
\hat{\mathrm{E}}\left(Y^{1}\right)-\hat{\mathrm{E}}\left(Y^{0}\right)= & \left(\frac{1}{n} \sum_{i=1}^{n}\left(\hat{\alpha}+\hat{\gamma} \ell_{i}+\hat{\beta} \times 1\right)\right) \\
& -\left(\frac{1}{n} \sum_{i=1}^{n}\left(\hat{\alpha}+\hat{\gamma} \ell_{i}+\hat{\beta} \times 0\right)\right) \\
= & \frac{1}{n} \sum_{i=1}^{n} \hat{\beta} \\
= & \hat{\beta}
\end{aligned}
$$

The parametric g-formula: Connection to $\hat{\beta}$

Estimator for the effect $\mathrm{E}\left(Y^{1}\right)-\mathrm{E}\left(Y^{0}\right)$:

$$
\begin{aligned}
\hat{\mathrm{E}}\left(Y^{1}\right)-\hat{\mathrm{E}}\left(Y^{0}\right)= & \left(\frac{1}{n} \sum_{i=1}^{n}\left(\hat{\alpha}+\hat{\gamma} \ell_{i}+\hat{\beta} \times 1\right)\right) \\
& -\left(\frac{1}{n} \sum_{i=1}^{n}\left(\hat{\alpha}+\hat{\gamma} \ell_{i}+\hat{\beta} \times 0\right)\right) \\
= & \frac{1}{n} \sum_{i=1}^{n} \hat{\beta} \\
= & \hat{\beta}
\end{aligned}
$$

With OLS, the parametric g-formula collapses on the coefficient.

The parametric g-formula is more general

Suppose the effect of A depends on L

$$
\mathrm{E}(Y \mid A, L)=\alpha+\gamma L+\beta A+\eta A L
$$

The parametric g-formula is more general

Suppose the effect of A depends on L

$$
\mathrm{E}(Y \mid A, L)=\alpha+\gamma L+\beta A+\eta A L
$$

Estimator for the effect $\mathrm{E}\left(Y^{1}\right)-\mathrm{E}\left(Y^{0}\right)$:

$$
\begin{aligned}
\hat{E}\left(Y^{1}\right)-\hat{E}\left(Y^{0}\right)= & \left.\left(\frac{1}{n} \sum_{i=1}^{n}\left(\hat{\alpha}+\hat{\gamma} \ell_{i}+\hat{\beta} \times 1+\hat{\eta} \times 1 \times \ell_{i}\right)\right)\right) \\
& -\left(\frac{1}{n} \sum_{i=1}^{n}\left(\hat{\alpha}+\hat{\gamma} \ell_{i}+\hat{\beta} \times 0+\hat{\eta} \times 0 \times \ell_{i}\right)\right)
\end{aligned}
$$

The parametric g-formula is more general

Suppose the effect of A depends on L

$$
\mathrm{E}(Y \mid A, L)=\alpha+\gamma L+\beta A+\eta A L
$$

Estimator for the effect $\mathrm{E}\left(Y^{1}\right)-\mathrm{E}\left(Y^{0}\right)$:

$$
\begin{aligned}
\hat{E}\left(Y^{1}\right)-\hat{E}\left(Y^{0}\right)= & \left.\left(\frac{1}{n} \sum_{i=1}^{n}\left(\hat{\alpha}+\hat{\gamma} \ell_{i}+\hat{\beta} \times 1+\hat{\eta} \times 1 \times \ell_{i}\right)\right)\right) \\
& -\left(\frac{1}{n} \sum_{i=1}^{n}\left(\hat{\alpha}+\hat{\gamma} \ell_{i}+\hat{\beta} \times 0+\hat{\eta} \times 0 \times \ell_{i}\right)\right) \\
= & \frac{1}{n} \sum_{i=1}^{n}\left(\hat{\beta}+\hat{\eta} \ell_{i}\right)
\end{aligned}
$$

The g-formula no longer collapses to a coefficient!

Parametric g-formula: Outcome model recap

1. Model the outcome mean $\mathrm{E}(Y \mid A, \vec{L})$
2. Change everyone's treatment to the value of interest
3. Predict for everyone
4. Take the average

$$
\hat{\mathrm{E}}\left(Y^{a}\right)=\frac{1}{n} \sum_{i=1}^{n} \hat{\mathrm{E}}\left(Y \mid \vec{L}=\vec{\ell}_{i}, A=a\right)
$$

$$
\vec{L} \longrightarrow A \longrightarrow Y
$$

$$
\vec{L} \rightarrow A \rightarrow Y
$$

$$
\vec{L} \longrightarrow A \longrightarrow Y
$$

Inverse probability of treatment weighting

Inverse probability of treatment weighting

Propensity score:
$\pi_{i}=\mathrm{P}\left(A=A_{i} \mid L=L_{i}\right)$

Inverse probability of treatment weighting

Propensity score:

$$
\pi_{i}=\mathrm{P}\left(A=A_{i} \mid L=L_{i}\right)
$$

Inverse probability weight:

$$
w_{i}=\frac{1}{\pi_{i}}
$$

Inverse probability of treatment weighting

Propensity score: $\quad \pi_{i}=\mathrm{P}\left(A=A_{i} \mid L=L_{i}\right)$
Inverse probability weight: $\quad w_{i}=\frac{1}{\pi_{i}}$

Inverse probability of treatment weighting

Propensity score: $\quad \pi_{i}=\mathrm{P}\left(A=A_{i} \mid L=L_{i}\right)$
Inverse probability weight: $\quad w_{i}=\frac{1}{\pi_{i}}$

Model the treatment assignment

$$
\hat{\mathrm{P}}(A=1 \mid \vec{L})=\operatorname{logit}^{-1}(\hat{\alpha}+\hat{\vec{\gamma}} \vec{L})
$$

Predict the propensity score for each unit

$$
\hat{\pi}_{i}= \begin{cases}\operatorname{logit}^{-1}(\hat{\alpha}+\hat{\vec{\gamma}} \vec{L}) & \text { if } A_{i}=1 \\ 1-\operatorname{logit}^{-1}(\hat{\alpha}+\hat{\vec{\gamma}} \vec{L}) & \text { if } A_{i}=0\end{cases}
$$

Estimate by inverse probability weighting

$$
\hat{\mathrm{E}}\left(Y^{a}\right)=\frac{1}{N} \sum_{i: A_{i}=a} \frac{Y_{i}}{\hat{\pi}_{i}}
$$

Learning goals for today

At the end of class, you will be able to

- estimate average causal effects with a parametric model
- for the outcome $\mathrm{E}(Y \mid A, \vec{L})$
- for the treatment $\mathrm{P}(A \mid \vec{L})$

After class:

- Hernán and Robins 2020 Chapter 12.1-12.5, 13, 15.1

Problem: Extreme weights create high variance

Problem: Extreme weights create high variance

Suppose a stratum $\vec{L}=\vec{\ell}$ contains

- 100 untreated units
- 1 treated unit

Problem: Extreme weights create high variance

Suppose a stratum $\vec{L}=\vec{\ell}$ contains

- 100 untreated units
- 1 treated unit

The treated unit gets a weight of 100 .

Problem: Extreme weights create high variance

Suppose a stratum $\vec{L}=\vec{\ell}$ contains

- 100 untreated units
- 1 treated unit

The treated unit gets a weight of 100 .
The estimate depends heavily on which treated unit happens to be included in the sample \rightarrow high-variance estimator

Problem: Extreme weights create high variance

Suppose a stratum $\vec{L}=\vec{\ell}$ contains

- 100 untreated units
- 1 treated unit

The treated unit gets a weight of 100 .

The estimate depends heavily on which treated unit happens to be included in the sample \rightarrow high-variance estimator

Two solutions

1. Trim the weights
2. Truncate the weights

Problem: Extreme weights create high variance

Suppose a stratum $\vec{L}=\vec{\ell}$ contains

- 100 untreated units
- 1 treated unit

The treated unit gets a weight of 100 .

The estimate depends heavily on which treated unit happens to be included in the sample \rightarrow high-variance estimator

Two solutions

1. Trim the weights
2. Truncate the weights

Both solutions accept bias in order to reduce variance

Accepting bias to reduce variance: Trimming

Accepting bias to reduce variance: Trimming

Accepting bias to reduce variance: Trimming

Drop units with extreme weights

Accepting bias to reduce variance: Trimming

Drop units with extreme weights

Accepting bias to reduce variance: Trimming

Drop units with extreme weights

Changes target population - Biased for full population

Accepting bias to reduce variance: Weight truncation

Accepting bias to reduce variance: Weight truncation

Truncate values of extreme weights

Accepting bias to reduce variance: Weight truncation

Truncate values of extreme weights

Accepting bias to reduce variance: Weight truncation

Truncate values of extreme weights

Biased: Ignores some confounding

