Matching Continued

INFO/STSCI/ILRST 3900: Causal Inference

3 Oct 2023

Learning goals for today

At the end of class, you will be able to:

1. Understand propensity score matching and coarsened exact matching
2. Use matching methods to estimate causal effects

Matching: so far

Goal: Sample Average Treatment Effect on the Treated

$$
\mathrm{E}\left(Y^{a=1} \mid A=1\right)-\mathrm{E}\left(Y^{\mathrm{a}=0} \mid A=1\right)
$$

Potential Solution: Create a group of untreated individuals, \mathcal{M}, which have a similar distribution of L to the treated group

$$
\frac{1}{n_{m}} \sum_{i \in \mathcal{M}} Y_{i} \approx \frac{1}{n_{t}} \sum_{i: A_{i}=1} Y_{i}^{a=0} \approx \mathrm{E}\left(Y^{a=0} \mid A=1\right)
$$

How:

- Find untreated unit(s) which are similar to each treated unit

Matching: so far

Goal: Sample Average Treatment Effect on the Treated

$$
\mathrm{E}\left(Y^{\mathrm{a}=1} \mid A=1\right)-\mathrm{E}\left(Y^{\mathrm{a}=0} \mid A=1\right)
$$

Potential Solution: Create a group of untreated individuals, \mathcal{M}, which have a similar distribution of L to the treated group

$$
\frac{1}{n_{m}} \sum_{i \in \mathcal{M}} Y_{i} \approx \frac{1}{n_{t}} \sum_{i: A_{i}=1} Y_{i}^{a=0} \approx \mathrm{E}\left(Y^{a=0} \mid A=1\right)
$$

How:

- Find untreated unit(s) which are similar to each treated unit
- Define "similar"

A common distance metric: Propensity scores

A common distance metric: Propensity scores

Suppose \vec{L} only affects A through a probability of treatment

$$
\pi_{i}=\pi\left(\vec{\ell}_{i}\right)=P\left(A_{i}=1 \mid \vec{L}=\vec{\ell}\right)
$$

A common distance metric: Propensity scores

Suppose \vec{L} only affects A through a probability of treatment

$$
\pi_{i}=\pi\left(\vec{\ell}_{i}\right)=P\left(A_{i}=1 \mid \vec{L}=\vec{\ell}\right)
$$

A common distance metric: Propensity scores

Suppose \vec{L} only affects A through a probability of treatment

$$
\pi_{i}=\pi\left(\vec{\ell}_{i}\right)=P\left(A_{i}=1 \mid \vec{L}=\vec{\ell}\right)
$$

Conditional exchangeability holds given $\pi\left(\ell_{i}\right)$

Why propensity scores are nice

Why propensity scores are nice

- Can match on propensity scores directly instead of L

Why propensity scores are nice

- Can match on propensity scores directly instead of L
- Easy to reason about

Why propensity scores are nice

- Can match on propensity scores directly instead of L
- Easy to reason about
- Can directly visualize the univariate matches

Why propensity scores are nice

- Can match on propensity scores directly instead of L
- Easy to reason about
- Can directly visualize the univariate matches
- Intuitive: Prioritizes covariates that predict treatment
- Mathematical guarantees on average

Why propensity scores are nice

- Can match on propensity scores directly instead of L
- Easy to reason about
- Can directly visualize the univariate matches
- Intuitive: Prioritizes covariates that predict treatment
- Mathematical guarantees on average
- If our DAG is correct

Why propensity scores are nice

- Can match on propensity scores directly instead of L
- Easy to reason about
- Can directly visualize the univariate matches
- Intuitive: Prioritizes covariates that predict treatment
- Mathematical guarantees on average
- If our DAG is correct
- If our matches are good

Why propensity scores are nice

- Can match on propensity scores directly instead of L
- Easy to reason about
- Can directly visualize the univariate matches
- Intuitive: Prioritizes covariates that predict treatment
- Mathematical guarantees on average
- If our DAG is correct
- If our matches are good
- We should on average get a matched group which looks like the the treatment group

$$
P\left(L \mid \pi_{i}, A_{i}=1\right)=P\left(L \mid \pi_{i}, A_{i}=0\right)
$$

A common distance metric: Exact matching

A common distance metric: Exact matching

- Ideally, we find an exact match for each treated unit

$$
d(i, j)= \begin{cases}0 & \text { if } \vec{L}_{i}=\vec{L}_{j} \\ \infty & \text { if } \vec{L}_{i} \neq \vec{L}_{j}\end{cases}
$$

Often leads to no matches at all

A common distance metric: Coarsened exact matching ${ }^{1}$

[^0]
A common distance metric: Coarsened exact matching ${ }^{1}$

- Define $\tilde{\vec{L}}$ to be a coarsened version of \vec{L}

[^1]
A common distance metric: Coarsened exact matching ${ }^{1}$

- Define $\tilde{\vec{L}}$ to be a coarsened version of \vec{L}
- Example: Age 15-20, 20-25, 25-30, etc

[^2]
A common distance metric: Coarsened exact matching ${ }^{1}$

- Define $\tilde{\vec{L}}$ to be a coarsened version of \vec{L}
- Example: Age 15-20, 20-25, 25-30, etc
- Match exactly on $\tilde{\vec{L}}$

[^3]
A common distance metric: Coarsened exact matching ${ }^{1}$

- Define $\tilde{\vec{L}}$ to be a coarsened version of \vec{L}
- Example: Age 15-20, 20-25, 25-30, etc
- Match exactly on $\tilde{\vec{L}}$

$$
d(i, j)= \begin{cases}0 & \text { if } \tilde{\vec{L}}_{i}=\tilde{\vec{L}}_{j} \\ \infty & \text { if } \tilde{\vec{L}}_{i} \neq \tilde{\vec{L}}_{j}\end{cases}
$$

[^4]
A common distance metric: Coarsened exact matching ${ }^{1}$

- Define $\tilde{\vec{L}}$ to be a coarsened version of \vec{L}
- Example: Age 15-20, 20-25, 25-30, etc
- Match exactly on $\tilde{\vec{L}}$

$$
d(i, j)= \begin{cases}0 & \text { if } \tilde{\vec{L}}_{i}=\tilde{\vec{L}}_{j} \\ \infty & \text { if } \tilde{\vec{L}}_{i} \neq \tilde{\vec{L}}_{j}\end{cases}
$$

- Benefit: Very transparent

[^5]
A common distance metric: Coarsened exact matching ${ }^{1}$

- Define $\tilde{\vec{L}}$ to be a coarsened version of \vec{L}
- Example: Age 15-20, 20-25, 25-30, etc
- Match exactly on $\tilde{\vec{L}}$

$$
d(i, j)= \begin{cases}0 & \text { if } \tilde{\vec{L}}_{i}=\tilde{\vec{L}}_{j} \\ \infty & \text { if } \tilde{\vec{L}}_{i} \neq \tilde{\vec{L}}_{j}\end{cases}
$$

- Benefit: Very transparent
- Benefit: Directly targets balance in L

[^6]
A common distance metric: Coarsened exact matching ${ }^{1}$

- Define $\tilde{\vec{L}}$ to be a coarsened version of \vec{L}
- Example: Age 15-20, 20-25, 25-30, etc
- Match exactly on $\tilde{\vec{L}}$

$$
d(i, j)= \begin{cases}0 & \text { if } \tilde{\vec{L}}_{i}=\tilde{\vec{L}}_{j} \\ \infty & \text { if } \tilde{\vec{L}}_{i} \neq \tilde{\vec{L}}_{j}\end{cases}
$$

- Benefit: Very transparent
- Benefit: Directly targets balance in L
- Drawback: May not find a good match for all individuals

[^7]
A common distance metric: Coarsened exact matching ${ }^{1}$

- Define $\tilde{\vec{L}}$ to be a coarsened version of \vec{L}
- Example: Age 15-20, 20-25, 25-30, etc
- Match exactly on $\tilde{\vec{L}}$

$$
d(i, j)= \begin{cases}0 & \text { if } \tilde{\vec{L}}_{i}=\tilde{\vec{L}}_{j} \\ \infty & \text { if } \tilde{\vec{L}}_{i} \neq \tilde{\vec{L}}_{j}\end{cases}
$$

- Benefit: Very transparent
- Benefit: Directly targets balance in L
- Drawback: May not find a good match for all individuals

[^8]
Multivariate distances: Recap

When matching on multivariate \vec{L}, you have to define the distance between each pair of confounder values $\vec{\ell}_{j}$ and $\vec{\ell}_{i}$

- Manhattan distance
- Euclidean distanace
- Mahalanobis distance
- Coarsened exact distance
- Propensity score distance

There is no right answer! Depends on the setting.

Multivariate distances: Recap

When matching on multivariate \vec{L}, you have to define the distance between each pair of confounder values $\vec{\ell}_{j}$ and $\vec{\ell}_{i}$

- Manhattan distance
- Euclidean distanace
- Mahalanobis distance
- Coarsened exact distance
- Propensity score distance

There is no right answer! Depends on the setting.

- Propensity scores are most popular
- Sometimes they are substantively meaningful

Multivariate distances: Recap

When matching on multivariate \vec{L}, you have to define the distance between each pair of confounder values $\vec{\ell}_{j}$ and $\vec{\ell}_{i}$

- Manhattan distance
- Euclidean distanace
- Mahalanobis distance
- Coarsened exact distance
- Propensity score distance

There is no right answer! Depends on the setting.

- Propensity scores are most popular
- Sometimes they are substantively meaningful
- Balance only occurs on average

Evaluate the matched sets

Whatever method, you should check that it worked

- Compare means of \vec{L} (propensity scores) across groups
- Possibly compare interaction cells; e.g., race \times age

Evaluate the matched sets

Whatever method, you should check that it worked

- Compare means of \vec{L} (propensity scores) across groups
- Possibly compare interaction cells; e.g., race \times age
- Visually assess distribution

Overlap

- Lack of overlap may indicate violation of positivity assumption

$$
P(A=a \mid L=\ell)>0 \text { for all a }
$$

- Ex: Sarah has no MD training. Would Sarah earn more money if she were a surgeon?

$$
P(A=\text { Surgeon } \mid \text { No MD })=0
$$

- If no good match exists, could be that $P(A=0 \mid L=\ell)=0$

Matching: A word of warning²

[^9]Matching: A word of warning ${ }^{2}$
${ }^{L} \rightarrow A \rightarrow Y$

Matching: A word of warning²

Matching works!

$$
L \longrightarrow A \rightarrow Y
$$

Matching: A word of warning²

Matching works!
No help!
$L \rightarrow A \rightarrow Y$

Matching: A word of warning²

Matching works!

No help!

${ }^{2}$ Sekhon, J. S. (2009). Opiates for the matches: Matching methods for causal inference. Annual Review of Political Science, 12(1), 487-508.

Matching: A word of warning²

Matching works!

No help!

No help!

Matching is an estimation strategy.

[^10]
Matching: A word of warning²

Matching works!

No help!

No help!

Matching is an estimation strategy.
It does not solve identification problems.

[^11]
Estimating a causal effect

- If we've matched everything well, we can compare the means
${ }^{3}$ On the statistical role of inexact matching in observational studies. Guo and Rothenhäusler (2023)

Estimating a causal effect

- If we've matched everything well, we can compare the means
- Treated group (with a match)
- Matched control group
${ }^{3}$ On the statistical role of inexact matching in observational studies. Guo and Rothenhäusler (2023)

Estimating a causal effect

- If we've matched everything well, we can compare the means
- Treated group (with a match)
- Matched control group
- We can be extra careful by combining regression + matching
- If everything is perfect, both should be fine on their own

[^12]
Estimating a causal effect

- If we've matched everything well, we can compare the means
- Treated group (with a match)
- Matched control group
- We can be extra careful by combining regression + matching
- If everything is perfect, both should be fine on their own
- Combining can reduce bias
- Reduces model sensitivity ${ }^{3}$

[^13]
Code

Let's try this out in R!

Learning goals for today

At the end of class, you will be able to:

1. Understand propensity score matching and coarsened exact matching
2. Use matching methods to estimate causal effects

[^0]: ${ }^{1}$ lacus, S. M., King, G., \& Porro, G. (2012). Causal inference without balance checking: Coarsened exact matching. Political Analysis, 20(1), 1-24.

[^1]: ${ }^{1}$ lacus, S. M., King, G., \& Porro, G. (2012). Causal inference without balance checking: Coarsened exact matching. Political Analysis, 20(1), 1-24.

[^2]: ${ }^{1}$ lacus, S. M., King, G., \& Porro, G. (2012). Causal inference without balance checking: Coarsened exact matching. Political Analysis, 20(1), 1-24.

[^3]: ${ }^{1}$ lacus, S. M., King, G., \& Porro, G. (2012). Causal inference without balance checking: Coarsened exact matching. Political Analysis, 20(1), 1-24.

[^4]: ${ }^{1}$ lacus, S. M., King, G., \& Porro, G. (2012). Causal inference without balance checking: Coarsened exact matching. Political Analysis, 20(1), 1-24.

[^5]: ${ }^{1}$ lacus, S. M., King, G., \& Porro, G. (2012). Causal inference without balance checking: Coarsened exact matching. Political Analysis, 20(1), 1-24.

[^6]: ${ }^{1}$ lacus, S. M., King, G., \& Porro, G. (2012). Causal inference without balance checking: Coarsened exact matching. Political Analysis, 20(1), 1-24.

[^7]: ${ }^{1}$ lacus, S. M., King, G., \& Porro, G. (2012). Causal inference without balance checking: Coarsened exact matching. Political Analysis, 20(1), 1-24.

[^8]: ${ }^{1}$ lacus, S. M., King, G., \& Porro, G. (2012). Causal inference without balance checking: Coarsened exact matching. Political Analysis, 20(1), 1-24.

[^9]: ${ }^{2}$ Sekhon, J. S. (2009). Opiates for the matches: Matching methods for causal inference. Annual Review of Political Science, 12(1), 487-508.

[^10]: ${ }^{2}$ Sekhon, J. S. (2009). Opiates for the matches: Matching methods for causal inference. Annual Review of Political Science, 12(1), 487-508.

[^11]: ${ }^{2}$ Sekhon, J. S. (2009). Opiates for the matches: Matching methods for causal inference. Annual Review of Political Science, 12(1), 487-508.

[^12]: ${ }^{3}$ On the statistical role of inexact matching in observational studies. Guo and Rothenhäusler (2023)

[^13]: ${ }^{3}$ On the statistical role of inexact matching in observational studies. Guo and Rothenhäusler (2023)

