Matching Intro

INFO/STSCI/ILRST 3900: Causal Inference

3 Oct 2023

At the end of class, you will be able to:

- 1. Explain how matching can be used to estimate causal effects
- 2. Explain bias variance trade-off in various matching procedures

Causal effect

What is the causal effect on income of a job training program?

Causal effect

What is the causal effect on income of a job training program?

Average Treatment Effect (on everyone)

$$\mathsf{E}(Y^{a=1}) - \mathsf{E}(Y^{a=0})$$

Causal effect

What is the causal effect on income of a job training program?

Average Treatment Effect (on everyone)

$$\mathsf{E}(Y^{a=1}) - \mathsf{E}(Y^{a=0})$$

► Average Treatment Effect on the Treated (ATT)

$$E(Y^{a=1} | A = 1) - E(Y^{a=0} | A = 1)$$

Matching: The big idea
Goal:
$$E(Y^{a=1} | A = 1) - E(Y^{a=0} | A = 1)$$
 ATT
 $E(Y^{a=1} | A = 1) \approx \frac{1}{n_t} \sum_{i:A_i=1} Y_i^{a=1} = \frac{1}{n_t} \sum_{i:A_i=1} Y_i$

Matching: The big idea
Goal:
$$E(Y^{a=1} | A = 1) - E(Y^{a=0} | A = 1)$$
 ATT
 $E(Y^{a=1} | A = 1) \approx \frac{1}{n_t} \sum_{i:A_i=1} Y_i^{a=1} = \frac{1}{n_t} \sum_{i:A_i=1} Y_i$
 $E(Y^{a=0} | A = 1) \approx \frac{1}{n_t} \sum_{i:A_i=1} Y_i^{a=0} \not\approx \frac{1}{n_c} \sum_{i:A_i=0} Y_i$

Matching: The big idea
Goal:
$$E(Y^{a=1} | A = 1) - E(Y^{a=0} | A = 1)$$
 ATT
 $E(Y^{a=1} | A = 1) \approx \frac{1}{n_t} \sum_{i:A_i=1} Y_i^{a=1} = \frac{1}{n_t} \sum_{i:A_i=1} Y_i$
 $E(Y^{a=0} | A = 1) \approx \frac{1}{n_t} \sum_{i:A_i=1} Y_i^{a=0} \not\approx \frac{1}{n_c} \sum_{i:A_i=0} Y_i$

Problem: Control may be different than the treatment

Matching: The big idea
Goal:
$$E(Y^{a=1} | A = 1) - E(Y^{a=0} | A = 1)$$
 ATT
 $E(Y^{a=1} | A = 1) \approx \frac{1}{n_t} \sum_{i:A_i=1} Y_i^{a=1} = \frac{1}{n_t} \sum_{i:A_i=1} Y_i$
 $E(Y^{a=0} | A = 1) \approx \frac{1}{n_t} \sum_{i:A_i=1} Y_i^{a=0} \not\approx \frac{1}{n_c} \sum_{i:A_i=0} Y_i$

Problem: Control may be different than the treatment

Potential Solution: Create a sample of **untreated** individuals, \mathcal{M} , which are similar to the treated group

Matching: The big idea
Goal:
$$E(Y^{a=1} | A = 1) - E(Y^{a=0} | A = 1)$$
 ATT
 $E(Y^{a=1} | A = 1) \approx \frac{1}{n_t} \sum_{i:A_i=1} Y_i^{a=1} = \frac{1}{n_t} \sum_{i:A_i=1} Y_i$
 $E(Y^{a=0} | A = 1) \approx \frac{1}{n_t} \sum_{i:A_i=1} Y_i^{a=0} \not\approx \frac{1}{n_c} \sum_{i:A_i=0} Y_i$

Problem: Control may be different than the treatment

Potential Solution: Create a sample of **untreated** individuals, \mathcal{M} , which are similar to the treated group

$$\frac{1}{n_m}\sum_{i\in\mathcal{M}}Y_i = \frac{1}{n_m}\sum_{i\in\mathcal{M}}Y_i^{a=0} \approx \frac{1}{n_t}\sum_{i:A_i=1}Y_i^{a=0}$$

4/17

Conditional exchangeability holds when conditioning on Age!

$$\mathsf{E}(Y^{a=0} \mid A = 1, \mathsf{Age} = \ell) = \mathsf{E}(Y^{a=0} \mid A = 0, \mathsf{Age} = \ell)$$

Estimate

$$\mathsf{E}(Y^{a=0} \mid A=1) = \underbrace{\sum_{\ell} \mathsf{Pr}(\mathsf{Age} = \ell \mid A=1) \mathsf{E}(Y^{a=0} \mid A=1, \mathsf{Age} = \ell)}_{\ell}$$

Weighted average of averages

Conditional exchangeability holds when conditioning on Age!

$$\mathsf{E}(Y^{\mathsf{a}=\mathsf{0}} \mid A = \mathsf{1}, \mathsf{Age} = \ell) = \mathsf{E}(Y^{\mathsf{a}=\mathsf{0}} \mid A = \mathsf{0}, \mathsf{Age} = \ell)$$

Estimate

Weighted average of averages

 $\mathsf{E}(Y^{a=0} \mid \mathcal{M}) = \sum_{\ell} \Pr(\mathsf{Age} = \ell \mid \mathcal{M}) \mathsf{E}(Y^{a=0} \mid A = 0, \mathsf{Age} = \ell, \mathcal{M})$

Conditional exchangeability holds when conditioning on Age!

$$\mathsf{E}(Y^{\mathsf{a}=\mathsf{0}} \mid A = \mathsf{1}, \mathsf{Age} = \ell) = \mathsf{E}(Y^{\mathsf{a}=\mathsf{0}} \mid A = \mathsf{0}, \mathsf{Age} = \ell)$$

► Estimate

$$\mathsf{E}(Y^{a=0} \mid A=1) = \underbrace{\sum_{\ell} \mathsf{Pr}(\mathsf{Age} = \ell \mid A=1) \mathsf{E}(Y^{a=0} \mid A=1, \mathsf{Age} = \ell)}_{\mathsf{Weinburght}}$$

Weighted average of averages

$$\begin{aligned} \mathsf{E}(Y^{a=0} \mid \mathcal{M}) &= \sum_{\ell} \Pr(\mathsf{Age} = \ell \mid \mathcal{M}) \mathsf{E}(Y^{a=0} \mid A = 0, \mathsf{Age} = \ell, \mathcal{M}) \\ &= \sum_{\ell} \Pr(\mathsf{Age} = \ell \mid \mathcal{M}) \mathsf{E}(Y^{a=0} \mid A = 0, \mathsf{Age} = \ell) \end{aligned}$$

□ ▶
 5 / 17

Conditional exchangeability holds when conditioning on Age!

$$\mathsf{E}(Y^{\mathsf{a}=\mathsf{0}} \mid A = \mathsf{1}, \mathsf{Age} = \ell) = \mathsf{E}(Y^{\mathsf{a}=\mathsf{0}} \mid A = \mathsf{0}, \mathsf{Age} = \ell)$$

Estimate

$$\mathsf{E}(Y^{a=0} \mid A = 1) = \underbrace{\sum_{\ell} \mathsf{Pr}(\mathsf{Age} = \ell \mid A = 1)\mathsf{E}(Y^{a=0} \mid A = 1, \mathsf{Age} = \ell)}_{\mathsf{Weighted average of averages}}$$

$$\mathsf{E}(Y^{a=0} \mid \mathcal{M}) = \sum_{\ell} \Pr(\mathsf{Age} = \ell \mid \mathcal{M}) \mathsf{E}(Y^{a=0} \mid A = 0, \mathsf{Age} = \ell, \mathcal{M})$$

= $\sum_{\ell} \Pr(\mathsf{Age} = \ell \mid \mathcal{M}) \mathsf{E}(Y^{a=0} \mid A = 0, \mathsf{Age} = \ell)$

If we can make Pr(Age = ℓ | M) ≈ Pr(Age = ℓ | A = 1), the two quantities should be the same

Goal: Sample Average Treatment Effect on the Treated

$$E(Y^{a=1} | A = 1) - E(Y^{a=0} | A = 1)$$

Potential Solution: Create a group of untreated individuals, \mathcal{M} , which have a **similar distribution of** L to the treated group

$$\frac{1}{n_m}\sum_{i\in\mathcal{M}}Y_i\approx\frac{1}{n_t}\sum_{i:A_i=1}Y_i^{a=0}\approx\mathsf{E}(Y^{a=0}\mid A=1)$$

Detail: How?

Job training					
Ind	Age	Y^{Train}	$Y^{NoTrain}$		
1	20	19	?		
2	25	63	?		
3	38	65	?		
4	38	43	?		

Job training					
Ind	Age	Y^{Train}	$Y^{NoTrain}$		
1	20	19	?		
2	25	63	?		
3	38	65	?		
4	38	43	?		

No job training					
Ind	Age	Y^{NoTrain}			
1	19	82			
2	18	39			
3	20	49			
4	20	56			
5	24	33			
6	26	82			
7	26	35			
8	38	35			
9	28	83			
10	30	79			
11	25	63			
12	32	52			
13	34	58			
14	34	70			
15	35	47			
16	37	42			
17	37	83			
18	38	33			
19	39	37			
20	39	60			

< □ → 7/17

You have a some treated units.

You go find some untreated units.

You find the closest matches along L

You find the closest matches along L

< □ →8 / 17

You find the closest matches along L

Treated Untreated, Unmatched Untreated, Matched

Compare the averages

Compare the averages

1. Completely transparent that Y_i^1 is observed

- 1. Completely transparent that Y_i^1 is observed
- 2. Easy to explain

- 1. Completely transparent that Y_i^1 is observed
- 2. Easy to explain
 - We had some treated units

- 1. Completely transparent that Y_i^1 is observed
- 2. Easy to explain
 - We had some treated units
 - ▶ We found a set of control units which are comparable

- 1. Completely transparent that Y_i^1 is observed
- 2. Easy to explain
 - We had some treated units
 - ▶ We found a set of control units which are comparable
 - We compared the means

- 1. Completely transparent that Y_i^1 is observed
- 2. Easy to explain
 - We had some treated units
 - We found a set of control units which are comparable
 - We compared the means
- 3. Can assess quality of matches before we look at the outcome

- 1. Completely transparent that Y_i^1 is observed
- 2. Easy to explain
 - We had some treated units
 - We found a set of control units which are comparable
 - We compared the means
- 3. Can assess quality of matches before we look at the outcome
- 4. Model-free*

- 1. Completely transparent that Y_i^1 is observed
- 2. Easy to explain
 - We had some treated units
 - We found a set of control units which are comparable
 - We compared the means
- 3. Can assess quality of matches before we look at the outcome
- 4. Model-free *
 - * but you have to define what makes a match "good"

Bias vs variance

The idea of matching is straightforward, but the details matter!

¹Figure from: http://scott.fortmann-roe.com/docs/BiasVariance.html

Bias vs variance

The idea of matching is straightforward, but the details matter!

↓ □↓ 10 / 17

http://scott.fortmann-roe.com/docs/BiasVariance.html

Matching in univariate settings: Algorithms

- ► Caliper or no caliper
- ▶ 1:1 vs k:1
- ► With replacement vs without replacement
- Greedy vs optimal

Confounder \vec{L}

Confounder \vec{L}

Caliper: A radius around a treated unit such that we would rather drop the unit than make a match beyond that radius

Caliper: A radius around a treated unit such that we would rather drop the unit than make a match beyond that radius

- Caliper: A radius around a treated unit such that we would rather drop the unit than make a match beyond that radius
- Feasible Sample Average Treatment Effect on the Treated (FSATT): Average among treated units for whom an acceptable match exists

Treated: Untreated:

Confounder \vec{L}

Treated:

Untreated:

Confounder \vec{L}

Confounder \vec{L}

► Benefit of 1:1 matching

Confounder \vec{L}

► Lower variance. Averaging over more cases.

► Benefit of 1:1 matching

Confounder \vec{L}

Lower variance. Averaging over more cases.

- Benefit of 1:1 matching
 - Lower bias. Only the best matches.

Confounder \vec{L}

Lower variance. Averaging over more cases.

- Benefit of 1:1 matching
 - Lower bias. Only the best matches.
- Greater $k \rightarrow$ lower variance, higher bias

Confounder \vec{L}

Confounder \vec{L}

Benefit of matching without replacement

Benefit of matching with replacement

Confounder \vec{L}

- Benefit of matching without replacement
 - ► Lower variance. Averaging over more cases.
- Benefit of matching with replacement

Confounder \vec{L}

- Benefit of matching without replacement
 - ► Lower variance. Averaging over more cases.
- Benefit of matching with replacement
 - ► Lower bias. Better matches.

 $^{^{2}}$ Gu, X. S., & Rosenbaum, P. R. (1993). Comparison of multivariate matching methods: Structures, distances, and algorithms. Journal of Computational and Graphical Statistics, 2(4), 405-420.

Greedy Matching: Match sequentially

²Gu, X. S., & Rosenbaum, P. R. (1993). Comparison of multivariate matching methods: Structures, distances, and algorithms. Journal of Computational and Graphical Statistics, 2(4), 405-420.

Greedy Matching: Match sequentially

 $^{^{2}}$ Gu, X. S., & Rosenbaum, P. R. (1993). Comparison of multivariate matching methods: Structures, distances, and algorithms. Journal of Computational and Graphical Statistics, 2(4), 405-420.

Greedy Matching: Match sequentially

 $^{^2} Gu, \, X. \, S., \, \&$ Rosenbaum, P. R. (1993). Comparison of multivariate matching methods: Structures, distances, and algorithms. Journal of Computational and Graphical Statistics, 2(4), 405-420.

Optimal Matching: Consider the whole set of matches

 $^{^2} Gu, \, X. \, S., \, \&$ Rosenbaum, P. R. (1993). Comparison of multivariate matching methods: Structures, distances, and algorithms. Journal of Computational and Graphical Statistics, 2(4), 405-420.

Optimal Matching: Consider the whole set of matches

• Optimal is better. Just computationally harder.

 2 Gu, X. S., & Rosenbaum, P. R. (1993). Comparison of multivariate matching methods: Structures, distances, and algorithms. Journal of Computational and Graphical Statistics, 2(4), 405-420.

Matching in univariate settings: Algorithms

- ► Caliper or no caliper
- ▶ 1:1 vs k:1
- ► With replacement vs without replacement
- Greedy vs optimal

Matching in univariate settings: Algorithms

- Caliper or no caliper
- ▶ 1:1 vs k:1
- With replacement vs without replacement
- Greedy vs optimal

Many reasonable choices, good choices depend on the data you have

At the end of class, you will be able to:

- 1. Explain how matching can be used to estimate causal effects
- 2. Explain bias variance trade-off in various matching procedures