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Learning goals for today

At the end of class, you will be able to:

1. Explain how matching can be used to estimate causal effects

2. Explain bias variance trade-off in various matching procedures
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Causal effect

What is the causal effect on income of a job training program?

▶ Average Treatment Effect (on everyone)

E(Y a=1)− E(Y a=0)

▶ Average Treatment Effect on the Treated (ATT)

E(Y a=1 | A = 1)− E(Y a=0 | A = 1)
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Matching: The big idea

Goal: E(Y a=1 | A = 1)− E(Y a=0 | A = 1) ATT

E(Y a=1 | A = 1) ≈ 1

nt

∑
i :Ai=1

Y a=1
i =

1

nt

∑
i :Ai=1

Yi

E(Y a=0 | A = 1) ≈ 1

nt

∑
i :Ai=1

Y a=0
i ̸≈ 1

nc

∑
i :Ai=0

Yi

Problem: Control may be different than the treatment

Potential Solution: Create a sample of untreated individuals,
M, which are similar to the treated group

1

nm

∑
i∈M

Yi =
1

nm

∑
i∈M

Y a=0
i ≈ 1

nt

∑
i :Ai=1

Y a=0
i
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Example

Job Training

Age

Income

▶ Conditional exchangeability holds when conditioning on Age!

E(Y a=0 | A = 1,Age = ℓ) = E(Y a=0 | A = 0,Age = ℓ)

▶ Estimate

E(Y a=0 | A = 1) =
∑
ℓ

Pr(Age = ℓ | A = 1)E(Y a=0 | A = 1,Age = ℓ)︸ ︷︷ ︸
Weighted average of averages

E(Y a=0 | M) =
∑

ℓ Pr(Age = ℓ | M)E(Y a=0 | A = 0,Age = ℓ,M)

=
∑

ℓ Pr(Age = ℓ | M)E(Y a=0 | A = 0,Age = ℓ)

▶ If we can make Pr(Age = ℓ | M) ≈ Pr(Age = ℓ | A = 1), the
two quantities should be the same
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Matching: The big idea

Goal: Sample Average Treatment Effect on the Treated

E(Y a=1 | A = 1)− E(Y a=0 | A = 1)

Potential Solution: Create a group of untreated individuals, M,
which have a similar distribution of L to the treated group

1

nm

∑
i∈M

Yi ≈
1

nt

∑
i :Ai=1

Y a=0
i ≈ E(Y a=0 | A = 1)

Detail: How?
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Example

Job training
Ind Age Y Train Y NoTrain

1 20 19 ?
2 25 63 ?
3 38 65 ?
4 38 43 ?

No job training
Ind Age Y NoTrain

1 19 82
2 18 39
3 20 49
4 20 56
5 24 33
6 26 82
7 26 35
8 38 35
9 28 83
10 30 79
11 25 63
12 32 52
13 34 58
14 34 70
15 35 47
16 37 42
17 37 83
18 38 33
19 39 37
20 39 60
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Matching: The big idea

Confounder L

O
u
tc
om

e
Y

Treated
1

2

Untreated

3

4

5

You have a some treated units.

Untreated, Unmatched
Untreated, Matched

3

4

5

E(Y | M) = Ê(Y a=0 | A = 1)

E(Y | A = 1)
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Matching: The big idea
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4

5
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Why matching is great

1. Completely transparent that Y 1
i is observed

2. Easy to explain

▶ We had some treated units
▶ We found a set of control units which are comparable
▶ We compared the means

3. Can assess quality of matches before we look at the outcome

4. Model-free∗

▶ ∗ but you have to define what makes a match “good”

9 / 17
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Bias vs variance
The idea of matching is straightforward, but the details matter!

1

1Figure from:
http://scott.fortmann-roe.com/docs/BiasVariance.html 10 / 17
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Matching in univariate settings: Algorithms

▶ Caliper or no caliper

▶ 1:1 vs k :1

▶ With replacement vs without replacement

▶ Greedy vs optimal

11 / 17



Caliper or no caliper matching

Treated:

Untreated:

•

•

•

•

•

•

Confounder L⃗

▶ Caliper: A radius around a treated unit such that we would
rather drop the unit than make a match beyond that radius

▶ Feasible Sample Average Treatment Effect on the Treated
(FSATT): Average among treated units for whom an
acceptable match exists

12 / 17
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1:1 vs k :1 matching

Treated:

Untreated:

•

• •

•

• •

Confounder L⃗

▶ Benefit of 2:1 matching

▶ Lower variance. Averaging over more cases.

▶ Benefit of 1:1 matching

▶ Lower bias. Only the best matches.

▶ Greater k → lower variance, higher bias
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With replacement vs without replacement matching

Treated:

Untreated:

•

•

•

•

Confounder L⃗

▶ Benefit of matching without replacement

▶ Lower variance. Averaging over more cases.

▶ Benefit of matching with replacement

▶ Lower bias. Better matches.
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Greedy vs optimal matching2

Treated:

Untreated:

•

•

•

• •

Confounder L⃗

▶ Optimal is better. Just computationally harder.

2Gu, X. S., & Rosenbaum, P. R. (1993). Comparison of multivariate
matching methods: Structures, distances, and algorithms. Journal of
Computational and Graphical Statistics, 2(4), 405-420.
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Greedy Matching:
Match sequentially

▶ Optimal is better. Just computationally harder.
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Optimal Matching:
Consider the whole set of matches

▶ Optimal is better. Just computationally harder.
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Matching in univariate settings: Algorithms

▶ Caliper or no caliper

▶ 1:1 vs k :1

▶ With replacement vs without replacement

▶ Greedy vs optimal

Many reasonable choices, good choices depend on the data you
have
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Learning goals for today

At the end of class, you will be able to:

1. Explain how matching can be used to estimate causal effects

2. Explain bias variance trade-off in various matching procedures
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