Matching Intro

INFO/STSCI/ILRST 3900: Causal Inference

3 Oct 2023

Learning goals for today

At the end of class, you will be able to:

1. Explain how matching can be used to estimate causal effects
2. Explain bias variance trade-off in various matching procedures

Causal effect

What is the causal effect on income of a job training program?

Causal effect

What is the causal effect on income of a job training program?

- Average Treatment Effect (on everyone)

$$
\mathrm{E}\left(Y^{a=1}\right)-\mathrm{E}\left(Y^{a=0}\right)
$$

Causal effect

What is the causal effect on income of a job training program?

- Average Treatment Effect (on everyone)

$$
\mathrm{E}\left(Y^{a=1}\right)-\mathrm{E}\left(Y^{a=0}\right)
$$

- Average Treatment Effect on the Treated (ATT)

$$
\mathrm{E}\left(Y^{a=1} \mid A=1\right)-\mathrm{E}\left(Y^{a=0} \mid A=1\right)
$$

Matching: The big idea

Matching: The big idea

Goal: $\mathrm{E}\left(Y^{a=1} \mid A=1\right)-\mathrm{E}\left(Y^{a=0} \mid A=1\right)$ ATT

$$
\mathrm{E}\left(Y^{a=1} \mid A=1\right) \approx \frac{1}{n_{t}} \sum_{i: A_{i}=1} Y_{i}^{a=1}=\frac{1}{n_{t}} \sum_{i: A_{i}=1} Y_{i}
$$

Matching: The big idea

Goal: $\mathrm{E}\left(Y^{a=1} \mid A=1\right)-\mathrm{E}\left(Y^{a=0} \mid A=1\right)$ ATT

$$
\begin{aligned}
& \mathrm{E}\left(Y^{a=1} \mid A=1\right) \approx \frac{1}{n_{t}} \sum_{i: A_{i}=1} Y_{i}^{a=1}=\frac{1}{n_{t}} \sum_{i: A_{i}=1} Y_{i} \\
& \mathrm{E}\left(Y^{\mathrm{a}=0} \mid A=1\right) \approx \frac{1}{n_{t}} \sum_{i: A_{i}=1} Y_{i}^{a=0} \not \approx \frac{1}{n_{c}} \sum_{i: A_{i}=0} Y_{i}
\end{aligned}
$$

Matching: The big idea

Goal: $\mathrm{E}\left(Y^{a=1} \mid A=1\right)-\mathrm{E}\left(Y^{a=0} \mid A=1\right)$ ATT

$$
\begin{aligned}
& \mathrm{E}\left(Y^{\mathrm{a}=1} \mid A=1\right) \approx \frac{1}{n_{t}} \sum_{i: A_{i}=1} Y_{i}^{a=1}=\frac{1}{n_{t}} \sum_{i: A_{i}=1} Y_{i} \\
& \mathrm{E}\left(Y^{a=0} \mid A=1\right) \approx \frac{1}{n_{t}} \sum_{i: A_{i}=1} Y_{i}^{a=0} \not \approx \frac{1}{n_{c}} \sum_{i: A_{i}=0} Y_{i}
\end{aligned}
$$

Problem: Control may be different than the treatment

Matching: The big idea

Goal: $\mathrm{E}\left(Y^{a=1} \mid A=1\right)-\mathrm{E}\left(Y^{a=0} \mid A=1\right)$ ATT

$$
\begin{aligned}
& \mathrm{E}\left(Y^{a=1} \mid A=1\right) \approx \frac{1}{n_{t}} \sum_{i: A_{i}=1} Y_{i}^{a=1}=\frac{1}{n_{t}} \sum_{i: A_{i}=1} Y_{i} \\
& \mathrm{E}\left(Y^{a=0} \mid A=1\right) \approx \frac{1}{n_{t}} \sum_{i: A_{i}=1} Y_{i}^{a=0} \not \approx \frac{1}{n_{c}} \sum_{i: A_{i}=0} Y_{i}
\end{aligned}
$$

Problem: Control may be different than the treatment
Potential Solution: Create a sample of untreated individuals, \mathcal{M}, which are similar to the treated group

Matching: The big idea

Goal: $\mathrm{E}\left(Y^{a=1} \mid A=1\right)-\mathrm{E}\left(Y^{a=0} \mid A=1\right)$ ATT

$$
\begin{aligned}
& \mathrm{E}\left(Y^{a=1} \mid A=1\right) \approx \frac{1}{n_{t}} \sum_{i: A_{i}=1} Y_{i}^{a=1}=\frac{1}{n_{t}} \sum_{i: A_{i}=1} Y_{i} \\
& \mathrm{E}\left(Y^{a=0} \mid A=1\right) \approx \frac{1}{n_{t}} \sum_{i: A_{i}=1} Y_{i}^{a=0} \not \approx \frac{1}{n_{c}} \sum_{i: A_{i}=0} Y_{i}
\end{aligned}
$$

Problem: Control may be different than the treatment
Potential Solution: Create a sample of untreated individuals, \mathcal{M}, which are similar to the treated group

$$
\frac{1}{n_{m}} \sum_{i \in \mathcal{M}} Y_{i}=\frac{1}{n_{m}} \sum_{i \in \mathcal{M}} Y_{i}^{a=0} \approx \frac{1}{n_{t}} \sum_{i: A_{i}=1} Y_{i}^{a=0}
$$

Example

Example

- Conditional exchangeability holds when conditioning on Age!

$$
\mathrm{E}\left(Y^{\mathrm{a}=0} \mid A=1, \text { Age }=\ell\right)=\mathrm{E}\left(Y^{a=0} \mid A=0, \text { Age }=\ell\right)
$$

- Estimate

$$
\mathrm{E}\left(Y^{a=0} \mid A=1\right)=\underbrace{\sum_{\ell} \operatorname{Pr}(\text { Age }=\ell \mid A=1) \mathrm{E}\left(Y^{a=0} \mid A=1, \text { Age }=\ell\right)}_{\text {Weighted average of averages }}
$$

Example

- Conditional exchangeability holds when conditioning on Age!

$$
\mathrm{E}\left(Y^{\mathrm{a}=0} \mid A=1, \text { Age }=\ell\right)=\mathrm{E}\left(Y^{a=0} \mid A=0, \text { Age }=\ell\right)
$$

- Estimate

$$
\begin{aligned}
& \mathrm{E}\left(Y^{a=0} \mid A=1\right)=\underbrace{\sum_{\ell} \operatorname{Pr}(\mathrm{Age}=\ell \mid A=1) \mathrm{E}\left(Y^{a=0} \mid A=1, \text { Age }=\ell\right)}_{\text {Weighted average of averages }} \\
& \mathrm{E}\left(Y^{\mathrm{a}=0} \mid \mathcal{M}\right)=\sum_{\ell} \operatorname{Pr}(\text { Age }=\ell \mid \mathcal{M}) \mathrm{E}\left(Y^{a=0} \mid A=0, \text { Age }=\ell, \mathcal{M}\right)
\end{aligned}
$$

Example

- Conditional exchangeability holds when conditioning on Age!

$$
\mathrm{E}\left(Y^{\mathrm{a}=0} \mid A=1, \text { Age }=\ell\right)=\mathrm{E}\left(Y^{a=0} \mid A=0, \text { Age }=\ell\right)
$$

- Estimate

$$
\begin{gathered}
\mathrm{E}\left(Y^{\mathrm{a}=0} \mid A=1\right)=\underbrace{\sum_{\ell} \operatorname{Pr}(\mathrm{Age}=\ell \mid A=1) \mathrm{E}\left(Y^{\mathrm{a}=0} \mid A=1, \text { Age }=\ell\right)}_{\text {Weighted average of averages }} \\
\begin{aligned}
\mathrm{E}\left(Y^{\mathrm{a}=0} \mid \mathcal{M}\right)= & \sum_{\ell} \operatorname{Pr}(\mathrm{Age}=\ell \mid \mathcal{M}) \mathrm{E}\left(Y^{a=0} \mid A=0, \text { Age }=\ell, \mathcal{M}\right) \\
& =\sum_{\ell} \operatorname{Pr}(\mathrm{Age}=\ell \mid \mathcal{M}) \mathrm{E}\left(Y^{a=0} \mid A=0, \text { Age }=\ell\right)
\end{aligned}
\end{gathered}
$$

Example

- Conditional exchangeability holds when conditioning on Age!

$$
\mathrm{E}\left(Y^{a=0} \mid A=1, \text { Age }=\ell\right)=\mathrm{E}\left(Y^{a=0} \mid A=0, \text { Age }=\ell\right)
$$

- Estimate

$$
\begin{gathered}
\mathrm{E}\left(Y^{\mathrm{a}=0} \mid A=1\right)=\underbrace{\sum_{\ell} \operatorname{Pr}(\mathrm{Age}=\ell \mid A=1) \mathrm{E}\left(Y^{\mathrm{a}=0} \mid A=1, \text { Age }=\ell\right)}_{\text {Weighted average of averages }} \\
\begin{aligned}
\mathrm{E}\left(Y^{\mathrm{a}=0} \mid \mathcal{M}\right)= & \sum_{\ell} \operatorname{Pr}(\mathrm{Age}=\ell \mid \mathcal{M}) \mathrm{E}\left(Y^{\mathrm{a}=0} \mid A=0, \text { Age }=\ell, \mathcal{M}\right) \\
& =\sum_{\ell} \operatorname{Pr}(\text { Age }=\ell \mid \mathcal{M}) \mathrm{E}\left(Y^{a=0} \mid A=0, \text { Age }=\ell\right)
\end{aligned}
\end{gathered}
$$

- If we can make $\operatorname{Pr}($ Age $=\ell \mid \mathcal{M}) \approx \operatorname{Pr}($ Age $=\ell \mid A=1)$, the two quantities should be the same

Matching: The big idea

Goal: Sample Average Treatment Effect on the Treated

$$
\mathrm{E}\left(Y^{a=1} \mid A=1\right)-\mathrm{E}\left(Y^{a=0} \mid A=1\right)
$$

Potential Solution: Create a group of untreated individuals, \mathcal{M}, which have a similar distribution of L to the treated group

$$
\frac{1}{n_{m}} \sum_{i \in \mathcal{M}} Y_{i} \approx \frac{1}{n_{t}} \sum_{i: A_{i}=1} Y_{i}^{a=0} \approx \mathrm{E}\left(Y^{a=0} \mid A=1\right)
$$

Detail: How?

Example

Job training			
Ind	Age	$Y^{\text {Train }}$	$Y^{\text {NoTrain }}$
1	20	19	$?$
2	25	63	$?$
3	38	65	$?$
4	38	43	$?$

Example

Job training			
Ind	Age	$Y^{\text {Train }}$	$Y^{\text {NoTrain }}$
1	20	19	$?$
2	25	63	$?$
3	38	65	$?$
4	38	43	$?$

No job training		
Ind	Age	$Y^{\text {NoTrain }}$
1	19	82
2	18	39
3	20	49
4	20	56
5	24	33
6	26	82
7	26	35
8	38	35
9	28	83
10	30	79
11	25	63
12	32	52
13	34	58
14	34	70
15	35	47
16	37	42
17	37	83
18	38	33
19	39	37
20	39	60

Matching: The big idea

You have a some treated units.

Matching: The big idea

You go find some untreated units.

Matching: The big idea

You find the closest matches along L

Matching: The big idea

You find the closest matches along L

Matching: The big idea

Treated Untreated

You find the closest matches along L

Matching: The big idea

> Treated
> Untreated, Unmatched Untreated, Matched

Compare the averages

Matching: The big idea

Compare the averages

Why matching is great

Why matching is great

1. Completely transparent that Y_{i}^{1} is observed

Why matching is great

1. Completely transparent that Y_{i}^{1} is observed
2. Easy to explain

Why matching is great

1. Completely transparent that Y_{i}^{1} is observed
2. Easy to explain

- We had some treated units

Why matching is great

1. Completely transparent that Y_{i}^{1} is observed
2. Easy to explain

- We had some treated units
- We found a set of control units which are comparable

Why matching is great

1. Completely transparent that Y_{i}^{1} is observed
2. Easy to explain

- We had some treated units
- We found a set of control units which are comparable
- We compared the means

Why matching is great

1. Completely transparent that Y_{i}^{1} is observed
2. Easy to explain

- We had some treated units
- We found a set of control units which are comparable
- We compared the means

3. Can assess quality of matches before we look at the outcome

Why matching is great

1. Completely transparent that Y_{i}^{1} is observed
2. Easy to explain

- We had some treated units
- We found a set of control units which are comparable
- We compared the means

3. Can assess quality of matches before we look at the outcome
4. Model-free*

Why matching is great

1. Completely transparent that Y_{i}^{1} is observed
2. Easy to explain

- We had some treated units
- We found a set of control units which are comparable
- We compared the means

3. Can assess quality of matches before we look at the outcome
4. Model-free*

- * but you have to define what makes a match "good"

Bias vs variance

The idea of matching is straightforward, but the details matter!

[^0]
Bias vs variance

The idea of matching is straightforward, but the details matter!

${ }^{1}$ Figure from:
http://scott.fortmann-roe.com/docs/BiasVariance.html

Matching in univariate settings: Algorithms

- Caliper or no caliper
- $1: 1$ vs $k: 1$
- With replacement vs without replacement
- Greedy vs optimal

Caliper or no caliper matching

Treated:

Untreated:

Confounder \vec{L}

Caliper or no caliper matching

Treated:

Untreated:

- Caliper: A radius around a treated unit such that we would rather drop the unit than make a match beyond that radius

Caliper or no caliper matching

Treated:

Untreated:

- Caliper: A radius around a treated unit such that we would rather drop the unit than make a match beyond that radius

Caliper or no caliper matching

Treated:

Untreated:

- Caliper: A radius around a treated unit such that we would rather drop the unit than make a match beyond that radius
- Feasible Sample Average Treatment Effect on the Treated (FSATT): Average among treated units for whom an acceptable match exists

$1: 1$ vs $k: 1$ matching

Treated:

Untreated:

Confounder \vec{L}

$1: 1$ vs $k: 1$ matching

Treated:

Untreated:

Confounder \vec{L}

$1: 1$ vs $k: 1$ matching

Treated:

Untreated:

$1: 1$ vs $k: 1$ matching

Treated:

Untreated:

Confounder \vec{L}

- Benefit of 2:1 matching
- Benefit of 1:1 matching

$1: 1$ vs $k: 1$ matching

Treated:

Untreated:

Confounder \vec{L}

- Benefit of 2:1 matching
- Lower variance. Averaging over more cases.
- Benefit of 1:1 matching

$1: 1$ vs $k: 1$ matching

Treated:

Untreated:

Confounder \vec{L}

- Benefit of 2:1 matching
- Lower variance. Averaging over more cases.
- Benefit of $1: 1$ matching
- Lower bias. Only the best matches.

$1: 1$ vs $k: 1$ matching

Treated:

Untreated:

Confounder \vec{L}

- Benefit of 2:1 matching
- Lower variance. Averaging over more cases.
- Benefit of 1:1 matching
- Lower bias. Only the best matches.
- Greater $k \rightarrow$ lower variance, higher bias

With replacement vs without replacement matching

Treated:

Untreated:

With replacement vs without replacement matching

Treated:
Untreated:

With replacement vs without replacement matching

Treated:
Untreated:

Confounder \vec{L}

With replacement vs without replacement matching

> Treated:

> Untreated:

Confounder \vec{L}

- Benefit of matching without replacement
- Benefit of matching with replacement

With replacement vs without replacement matching

Treated:

Untreated:

Confounder \vec{L}

- Benefit of matching without replacement
- Lower variance. Averaging over more cases.
- Benefit of matching with replacement

With replacement vs without replacement matching

Treated:

Untreated:

Confounder \vec{L}

- Benefit of matching without replacement
- Lower variance. Averaging over more cases.
- Benefit of matching with replacement
- Lower bias. Better matches.

Greedy vs optimal matching²

Treated:

Untreated:

Confounder \vec{L}

[^1]
Greedy vs optimal matching²

Greedy Matching:
Match sequentially

Treated:

Untreated:

Confounder \vec{L}

[^2]
Greedy vs optimal matching²

Greedy Matching:
Match sequentially

Treated:

Untreated:

[^3]
Greedy vs optimal matching²

Greedy Matching:
Match sequentially

Treated:

Untreated:

Confounder \vec{L}

[^4]
Greedy vs optimal matching²

> Optimal Matching:
> Consider the whole set of matches

> Treated:

> Untreated:

[^5]
Greedy vs optimal matching²

> Optimal Matching:
> Consider the whole set of matches

Treated:

Untreated:

- Optimal is better. Just computationally harder.

[^6]
Matching in univariate settings: Algorithms

- Caliper or no caliper
- $1: 1$ vs $k: 1$
- With replacement vs without replacement
- Greedy vs optimal

Matching in univariate settings: Algorithms

- Caliper or no caliper
- $1: 1$ vs $k: 1$
- With replacement vs without replacement
- Greedy vs optimal

Many reasonable choices, good choices depend on the data you have

Learning goals for today

At the end of class, you will be able to:

1. Explain how matching can be used to estimate causal effects
2. Explain bias variance trade-off in various matching procedures

[^0]: ${ }^{1}$ Figure from:
 http://scott.fortmann-roe.com/docs/BiasVariance.html

[^1]: ${ }^{2}$ Gu, X. S., \& Rosenbaum, P. R. (1993). Comparison of multivariate matching methods: Structures, distances, and algorithms. Journal of Computational and Graphical Statistics, 2(4), 405-420.

[^2]: ${ }^{2}$ Gu, X. S., \& Rosenbaum, P. R. (1993). Comparison of multivariate matching methods: Structures, distances, and algorithms. Journal of Computational and Graphical Statistics, 2(4), 405-420.

[^3]: ${ }^{2}$ Gu, X. S., \& Rosenbaum, P. R. (1993). Comparison of multivariate matching methods: Structures, distances, and algorithms. Journal of Computational and Graphical Statistics, 2(4), 405-420.

[^4]: ${ }^{2}$ Gu, X. S., \& Rosenbaum, P. R. (1993). Comparison of multivariate matching methods: Structures, distances, and algorithms. Journal of Computational and Graphical Statistics, 2(4), 405-420.

[^5]: ${ }^{2}$ Gu, X. S., \& Rosenbaum, P. R. (1993). Comparison of multivariate matching methods: Structures, distances, and algorithms. Journal of Computational and Graphical Statistics, 2(4), 405-420.

[^6]: ${ }^{2}$ Gu, X. S., \& Rosenbaum, P. R. (1993). Comparison of multivariate matching methods: Structures, distances, and algorithms. Journal of Computational and Graphical Statistics, 2(4), 405-420.

