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Learning goals for today

At the end of class, you will be able to

P estimate average causal effects with a parametric model for
the outcome E(Y | A, L) and treatment

» Reason about the bias variance tradeoff

» Use the Augmented IPW estimator to guard against model
misspecification

After class:

» Herndn and Robins 2020 Chapter 12.1-12.5, 13, 15.1
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Logistics

» Problem Set 4 due Oct 8
» Peer Review 3 due Oct 16
» Quiz 3 Oct 16

» Project Part 1 due Oct 20
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Sample vs population

» Conditional Mean: Average outcome for individuals with
specific characteristics

Descriptive Causal
E(Y|A=a,L="0) | E(Y°|A=a,L=)
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Sample vs population

» Conditional Mean: Average outcome for individuals with
specific characteristics

Descriptive Causal
E(Y|A=a,L="0) | E(Y°|A=a,L=)

» Population quantities: average outcome for all units in the
population with specific characteristics

E(Y|A=a,L=10)

» Sample conditional mean: average outcome for units in our
sample with specific characteristics

E(Y|A=a,L=1{)

» Population quantities can be descriptive or causal
» Sample quantities can be descriptive or causal
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Standardization

Aggregate the average over sub-groups to get the overall average
E(Y)=) E(Y°|L=0) x  Pr(L=1)
N——

——
¢ Avg of sub-group Prob of sub-group

_1 E(ya — 9.
=23 EIL=1)

i Avg of sub-group for unit i

1 ~
:;Z E(Y|A=a,L={¢)

i

Avg of sub-group for unit i
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Nonparametric estimation

Causal assumptions
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Nonparametric estimation
Causal assumptions
S
L—A—Y

Estimate population quantity with sample quantity

A

E(Y?) ~ E(Y?) = ZE (Y|L=1t;,A=a)

5/21



Nonparametric estimation
Causal assumptions
S
L—A—Y

Estimate population quantity with sample quantity

A

E(Y?) ~ E(Y?) = ZE (Y|L=t,A=a)

To estimate £(Y2=1) — E(Y2=0) we need observations with both
A =1 and A = 0 for every observed /;
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Parametric estimation: Qutcome model

Standardization estimator
~ 1 N
E(Y?) = EZE(Y | L=1¢;,A=a)

i
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Parametric estimation: Qutcome model

Standardization estimator

E(Ya):%ZIAE(Y]L:&-,A:a)

i

Learn a parametric model to predict Y given L and A
» Linear models potentially with interaction terms

» Other types of regression: logistic regression, poisson
regression, etc

» Machine learning models
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Parametric estimation: Qutcome model

Standardization estimator

E(Ya):%ZIAE(Y]L:&-,A:a)

i

Learn a parametric model to predict Y given L and A
» Linear models potentially with interaction terms

» Other types of regression: logistic regression, poisson
regression, etc

» Machine learning models

For every unit /,
» Set the treatment value to a
» Predict the outcome

Then average over all units
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Bias Variance trade-off

In statistics, the bias variance trade off is a fundamental constraint
» Bias: The functions we may estimate are not complex enough
to capture the “true relationship”

» Variance: The model we are fitting is too complex so our
estimated parameters change a lot from sample to sample
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Bias Variance trade-off

In statistics, the bias variance trade off is a fundamental constraint
» Bias: The functions we may estimate are not complex enough
to capture the “true relationship”
» Variance: The model we are fitting is too complex so our
estimated parameters change a lot from sample to sample
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Bias Variance trade-off

Bias and variance in making cakes:

=
/4 3 -

5 , i 2

Figure: High Bias, low variance g”!i s A"l

Figure: Low bias, High variance
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Bias and variance in choosing conditional expectation
model

» Linear model: 1 parameter per covariate (high bias, low
variance)

» Non-parametric estimate: 2P means to estimate for p binary
covariates (low bias, high variance)

» Other methods are typically somewhere in between

» Larger sample allows for more complex models

9/21



Bias and variance in choosing causal model

» Is a a DAG ever “truly correct”?
» Can always add more confounders

» Would the bias from the confounders you could add
substantially change your claim?

» Including additional confounders makes estimation more
difficult
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Parametric g-formula: Outcome model recap
LS5 Ay

Estimate the outcome mean E(Y | A, L) with some model
Change everyone's treatment to the value of interest

Predict for everyone

B

Take the average

E(Y?) = ZE Y |L=1(;,A=a)
11
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Outcome model

L—>A3Y
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Propensity score model
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Inverse probability of treatment weighting

@ Untreated
@ Treated

~
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Inverse probability of treatment weighting
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Inverse probability of treatment weighting
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Inverse probability of treatment weighting

@ Untreated
@ Treated
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@ Untreated
@ Treated

Propensity score:
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Inverse probability of treatment weighting
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Inverse probability of treatment weighting

~ 1 Y
E(YY) == ’
=5 2 7
itAi=1
1 AY, A;Y, 1 A;Y, (1)
_ iy iTi _ iTi
N i +_Z e NZ e
itAi= i:Ai=0 i
1 Y;
0 < i
E(Y)_N,z: 1—7;
i:A;i=0
1 (1-A)Y; (1-A)Y, 1« (L—-A)Y,
N 1—# 1—# *NZ 1—7
itAi=1 i:A;i=0 i
(2)
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Parametric model: propensity model
Model the treatment assignment
#i=P(A=1]|L)=logit™* (&+4L)
Estimate by inverse probability weighting (IPW)

R

1
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Outcome modeling vs Propensity score modeling

» If our model captures the true relationship, either will work

» Outcome modeling is used more because it typically has lower
variance
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Outcome modeling vs Propensity score modeling

» If our model captures the true relationship, either will work

» Outcome modeling is used more because it typically has lower
variance

» What if our models are wrong?

» We can use flexible machine learning methods with low bias
when sample size is very large

» What if we don't include the right covariates?
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Augmented IPW

We can use both outcome modeling and IPW together

E(Yl):]-<ZA,‘YI_(Ai—TAr,')E(Y|A:].,L:€,-)> (3)

N 7,'\ri TAI','

TN

11— 1— 7

E(v?) 1(2(1_A;)Y,- ([1—Af]—[1—ﬁ;])l§(Y|A:0,L:€,-)>

1

(4)

17/21



Augmented IPW
Why is this a good idea?

: (A,-Y,- (A —m)E(Y|A=11L= e,-)>

i s

I A

i i i

rAY —R)E(Y |A=1,L=1;

PN

Ui 7Ari

c (Y_1+(A,- —m)YE (A - R)E(Y [A=1,L —z,-)>

:E(Y-1)+E<M [Y,-l—E(Y\A:LLze,-)D

+E[E<M!L—€;>E(Yil_E[Y\A_17L_£"] ‘(g)_g")]
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Augmented IPW
Why is this a good idea?

E(E(Y!) = E(Y})
+E [E ((A;”) | L:(,-) E(Y,-l—IAE[Y|A:1,L:€,-] | L:f;)]
(6)
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Augmented IPW
Why is this a good idea?
E(E(Y!)) = E(Y})
+E [E (M_”) | L—ﬁ,-)E(Y,.l—E[Y|A=1,L=£,-] | L:E,-)}
(6)

Ty

e(Br™ i) =" ©

s i

has expectation zero when 7; is correctly specified and non-zero
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Augmented IPW
Why is this a good idea?

+EF<VVTﬁML=&>EO?EWA—LL—&”é;aﬂ

E@?-EW|A:LL:&HL=&) 7)

has expectation zero when the outcome model is correctly specified
and non-zero

19/21



Augmented IPW

» Estimator of ATE is “doubly robust”
» Second term has expectation 0 if

» propensity score model is well specified, or
» the outcome model is well specified

» Robust against misspecification of either (but not both)

» If the outcome model is well specified, using standardization
with just the outcome model often has less variance

» If the outcome model is not well specified, using
standardization with just the outcome model will not be
consistent

» Using AIPW provides insurance against misspecification
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Learning goals for today

At the end of class, you will be able to

P estimate average causal effects with a parametric model for
the outcome E(Y | A, L) and treatment

» Reason about the bias variance tradeoff

» Use the Augmented IPW estimator to guard against model
misspecification

After class:

» Herndn and Robins 2020 Chapter 12.1-12.5, 13, 15.1
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