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Learning goals for today

At the end of class, you will be able to

▶ estimate average causal effects with a parametric model for
the outcome E(Y | A, L) and treatment

▶ Reason about the bias variance tradeoff

▶ Use the Augmented IPW estimator to guard against model
misspecification

After class:

▶ Hernán and Robins 2020 Chapter 12.1–12.5, 13, 15.1
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Logistics

▶ Problem Set 4 due Oct 8

▶ Peer Review 3 due Oct 16

▶ Quiz 3 Oct 16

▶ Project Part 1 due Oct 20
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Sample vs population

▶ Conditional Mean: Average outcome for individuals with
specific characteristics

Descriptive Causal

E (Y | A = a, L = ℓ) E (Y a | A = a, L = ℓ)

▶ Population quantities: average outcome for all units in the
population with specific characteristics

E (Y | A = a, L = ℓ)

▶ Sample conditional mean: average outcome for units in our
sample with specific characteristics

Ê (Y | A = a, L = ℓ)

▶ Population quantities can be descriptive or causal

▶ Sample quantities can be descriptive or causal
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Standardization

Aggregate the average over sub-groups to get the overall average

Ê(Y a) =
∑
ℓ

Ê(Y a | L = ℓ)︸ ︷︷ ︸
Avg of sub-group

× P̂r(L = ℓ)︸ ︷︷ ︸
Prob of sub-group

=
1

n

∑
i

Ê(Y a | L = ℓi )︸ ︷︷ ︸
Avg of sub-group for unit i

=
1

n

∑
i

Ê(Y | A = a, L = ℓi )︸ ︷︷ ︸
Avg of sub-group for unit i

4 / 21



Nonparametric estimation

Causal assumptions

L A Y

Estimate population quantity with sample quantity

E(Y a) ≈ Ê(Y a) =
1

n

∑
i

Ê(Y | L = ℓi ,A = a)

To estimate Ê (Y a=1)− Ê(Y a=0) we need observations with both
A = 1 and A = 0 for every observed ℓi
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Parametric estimation: Outcome model

Standardization estimator

Ê(Y a) =
1

n

∑
i

Ê(Y | L = ℓi ,A = a)

Learn a parametric model to predict Y given L and A

▶ Linear models potentially with interaction terms

▶ Other types of regression: logistic regression, poisson
regression, etc

▶ Machine learning models

For every unit i ,

▶ Set the treatment value to a

▶ Predict the outcome

Then average over all units
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Bias Variance trade-off

In statistics, the bias variance trade off is a fundamental constraint

▶ Bias: The functions we may estimate are not complex enough
to capture the “true relationship”

▶ Variance: The model we are fitting is too complex so our
estimated parameters change a lot from sample to sample
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Bias Variance trade-off

Bias and variance in making cakes:

Figure: High Bias, low variance

Figure: Low bias, High variance
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Bias and variance in choosing conditional expectation
model

▶ Linear model: 1 parameter per covariate (high bias, low
variance)

▶ Non-parametric estimate: 2p means to estimate for p binary
covariates (low bias, high variance)

▶ Other methods are typically somewhere in between

▶ Larger sample allows for more complex models
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Bias and variance in choosing causal model

▶ Is a a DAG ever “truly correct”?

▶ Can always add more confounders

▶ Would the bias from the confounders you could add
substantially change your claim?

▶ Including additional confounders makes estimation more
difficult
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Parametric g-formula: Outcome model recap

L A Y

1. Estimate the outcome mean E(Y | A, L) with some model

2. Change everyone’s treatment to the value of interest

3. Predict for everyone

4. Take the average

Ê(Y a) =
1

n

n∑
i=1

Ê(Y | L = ℓi ,A = a)
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Outcome model

L A Y
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Propensity score model

L A Y
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Inverse probability of treatment weighting

L = 0 L = 1• Untreated

• Treated

•••
• •••

•
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Propensity score: πi = P(A = 1 | L = Li)

πi = 1/4

1
πi

= 4, 1
1−πi

= 4/3

πi = 3/4

1
πi

= 4/3, 1
1−πi

= 4

πi = P(A = 1 | L = Li)
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Inverse probability of treatment weighting

Ê(Y 1) =
1

N

∑
i :Ai=1

Yi

π̂i

=
1

N

 ∑
i :Ai=1

AiYi

π̂i
+
∑

i :Ai=0

AiYi

π̂i

 =
1

N

∑
i

AiYi

π̂i

(1)

Ê(Y 0) =
1

N

∑
i :Ai=0

Yi

1− π̂i

=
1

N

( ∑
i :Ai=1

(1− Ai )Yi

1− π̂i
+
∑
i :Ai=0

(1− Ai )Yi

1− π̂i

)
=

1

N

∑
i

(1− Ai )Yi

1− π̂i

(2)
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Parametric model: propensity model

Model the treatment assignment

π̂i = P̂(A = 1 | L) = logit−1 (α̂+ γ̂L)

Estimate by inverse probability weighting (IPW)

Ê(Y 1)− Ê(Y 0) =
1

N

(∑
i

AiYi

π̂i
−
∑
i

(1− Ai )Yi

1− π̂i

)
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Outcome modeling vs Propensity score modeling

▶ If our model captures the true relationship, either will work

▶ Outcome modeling is used more because it typically has lower
variance

▶ What if our models are wrong?

▶ We can use flexible machine learning methods with low bias
when sample size is very large

▶ What if we don’t include the right covariates?
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Augmented IPW

We can use both outcome modeling and IPW together

Ê (Y 1) =
1

N

(∑
i

AiYi

π̂i
− (Ai − π̂i )Ê (Y | A = 1, L = ℓi )

π̂i

)
(3)

Ê (Y 0) =
1

N

(∑
i

(1− Ai )Yi

1− π̂i
− ([1− Ai ]− [1− π̂i ])Ê (Y | A = 0, L = ℓi )

1− π̂i

)
(4)
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Augmented IPW

Why is this a good idea?

E

(
AiYi

π̂i
− (Ai − π̂i )Ê (Y | A = 1, L = ℓi )

π̂i

)

= E

(
Y 1
i − Y 1

i

π̂i
π̂i

+
AiYi

π̂i
− (Ai − π̂i )Ê (Y | A = 1, L = ℓi )

π̂i

)

= E

(
Y 1
i +

(Ai − πi )Y
1
i

π̂i
− (Ai − π̂i )Ê (Y | A = 1, L = ℓi )

π̂i

)

= E
(
Y 1
i

)
+ E

(
(Ai − π̂i )

π̂i

[
Y 1
i − Ê (Y | A = 1, L = ℓi )

])
= E

(
Y 1
i

)
+ E

[
E

(
(Ai − π̂i )

π̂i
| L = ℓi

)
E
(
Y 1
i − Ê[Y | A = 1, L = ℓi ] | L = ℓi

)]
(5)
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E

(
(Ai − π̂i )

π̂i
| L = ℓi

)
=

πi − π̂i
π̂i

(7)

has expectation zero when π̂i is correctly specified and non-zero
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Augmented IPW

▶ Estimator of ATE is “doubly robust”
▶ Second term has expectation 0 if

▶ propensity score model is well specified, or
▶ the outcome model is well specified

▶ Robust against misspecification of either (but not both)

▶ If the outcome model is well specified, using standardization
with just the outcome model often has less variance

▶ If the outcome model is not well specified, using
standardization with just the outcome model will not be
consistent

▶ Using AIPW provides insurance against misspecification
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