Parametric Modeling: Propensity modeling

Cornell STSCI / INFO / ILRST 3900 causal3900.github.io

Oct 7, 2025

Learning goals for today

At the end of class, you will be able to

- ightharpoonup estimate average causal effects with a parametric model for the outcome $E(Y \mid A, L)$ and treatment
- ► Reason about the bias variance tradeoff
- Use the Augmented IPW estimator to guard against model misspecification

After class:

► Hernán and Robins 2020 Chapter 12.1–12.5, 13, 15.1

Logistics

- ► Problem Set 4 due Oct 8
- ► Peer Review 3 due Oct 16
- ▶ Quiz 3 Oct 16
- ► Project Part 1 due Oct 20

Sample vs population

► Conditional Mean: Average outcome for individuals with specific characteristics

Descriptive	Causal
$E(Y \mid A = a, L = \ell)$	$E(Y^a \mid A=a, L=\ell)$

Sample vs population

 Conditional Mean: Average outcome for individuals with specific characteristics

Descriptive	Causal
$E(Y \mid A = a, L = \ell)$	$E(Y^a \mid A=a, L=\ell)$

► Population quantities: average outcome for **all units in the population** with specific characteristics

$$E(Y \mid A = a, L = \ell)$$

► Sample conditional mean: average outcome for **units in our sample** with specific characteristics

$$\hat{E}(Y \mid A = a, L = \ell)$$

- ► Population quantities can be descriptive or causal
- ► Sample quantities can be descriptive or causal

Standardization

Aggregate the average over sub-groups to get the overall average

$$\hat{\mathsf{E}}(Y^a) = \sum_{\ell} \underbrace{\hat{\mathsf{E}}(Y^a \mid L = \ell)}_{\mathsf{Avg of sub-group}} \times \underbrace{\hat{\mathsf{Pr}}(L = \ell)}_{\mathsf{Prob of sub-group}}$$

$$= \frac{1}{n} \sum_{i} \underbrace{\hat{\mathsf{E}}(Y^a \mid L = \ell_i)}_{\mathsf{Avg of sub-group for unit i}}$$

$$= \frac{1}{n} \sum_{i} \underbrace{\hat{\mathsf{E}}(Y \mid A = a, L = \ell_i)}_{\mathsf{Avg of sub-group for unit i}}$$

Nonparametric estimation

Causal assumptions

Nonparametric estimation

Causal assumptions

$$L \xrightarrow{A \to Y} Y$$

Estimate population quantity with sample quantity

$$\mathsf{E}(Y^a) \approx \hat{\mathsf{E}}(Y^a) = \frac{1}{n} \sum_i \hat{\mathsf{E}}(Y \mid L = \ell_i, A = a)$$

Nonparametric estimation

Causal assumptions

$$L \xrightarrow{A \to Y} Y$$

Estimate population quantity with sample quantity

$$\mathsf{E}(Y^a) pprox \hat{\mathsf{E}}(Y^a) = \frac{1}{n} \sum_i \hat{\mathsf{E}}(Y \mid L = \ell_i, A = a)$$

To estimate $\hat{\mathcal{E}}(Y^{a=1}) - \hat{\mathcal{E}}(Y^{a=0})$ we need observations with both A=1 and A=0 for every observed ℓ_i

Parametric estimation: Outcome model

Standardization estimator

$$\hat{\mathsf{E}}(Y^{\mathsf{a}}) = \frac{1}{n} \sum_{i} \hat{\mathsf{E}}(Y \mid L = \ell_{i}, A = \mathsf{a})$$

Parametric estimation: Outcome model

Standardization estimator

$$\hat{\mathsf{E}}(Y^{\mathsf{a}}) = \frac{1}{n} \sum_{i} \hat{\mathsf{E}}(Y \mid L = \ell_{i}, A = \mathsf{a})$$

Learn a parametric model to predict Y given L and A

- ► Linear models potentially with interaction terms
- ► Other types of regression: logistic regression, poisson regression, etc
- ► Machine learning models

Parametric estimation: Outcome model

Standardization estimator

$$\hat{\mathsf{E}}(Y^{\mathsf{a}}) = \frac{1}{n} \sum_{i} \hat{\mathsf{E}}(Y \mid L = \ell_{i}, A = \mathsf{a})$$

Learn a parametric model to predict Y given L and A

- ► Linear models potentially with interaction terms
- ► Other types of regression: logistic regression, poisson regression, etc
- ► Machine learning models

For every unit i,

- ► Set the treatment value to a
- ► Predict the outcome

Then average over all units

- ▶ Bias: The functions we may estimate are not complex enough to capture the "true relationship"
- ► Variance: The model we are fitting is too complex so our estimated parameters change a lot from sample to sample

- ▶ Bias: The functions we may estimate are not complex enough to capture the "true relationship"
- ▶ Variance: The model we are fitting is too complex so our estimated parameters change a lot from sample to sample

- ▶ Bias: The functions we may estimate are not complex enough to capture the "true relationship"
- ▶ Variance: The model we are fitting is too complex so our estimated parameters change a lot from sample to sample

- ▶ Bias: The functions we may estimate are not complex enough to capture the "true relationship"
- ► Variance: The model we are fitting is too complex so our estimated parameters change a lot from sample to sample

- ▶ Bias: The functions we may estimate are not complex enough to capture the "true relationship"
- ► Variance: The model we are fitting is too complex so our estimated parameters change a lot from sample to sample

Bias and variance in making cakes:

Figure: High Bias, low variance

Figure: Low bias, High variance

Bias and variance in choosing conditional expectation model

- ► Linear model: 1 parameter per covariate (high bias, low variance)
- Non-parametric estimate: 2^p means to estimate for p binary covariates (low bias, high variance)
- ▶ Other methods are typically somewhere in between
- ► Larger sample allows for more complex models

Bias and variance in choosing causal model

- ► Is a a DAG ever "truly correct"?
- ► Can always add more confounders
- ► Would the bias from the confounders you could add substantially change your claim?
- Including additional confounders makes estimation more difficult

Parametric g-formula: Outcome model recap

$$L \xrightarrow{A \to Y} Y$$

- 1. Estimate the outcome mean $E(Y \mid A, L)$ with some model
- 2. Change everyone's treatment to the value of interest
- 3. Predict for everyone
- 4. Take the average

$$\hat{E}(Y^a) = \frac{1}{n} \sum_{i=1}^n \hat{E}(Y \mid L = \ell_i, A = a)$$

Outcome model

Propensity score model

- Untreated
- Treated

- Untreated
- Treated

- Untreated
- Treated

- Untreated
- Treated

- Untreated
- **Treated**

$$\frac{1}{\pi_i} = 4, \frac{1}{1-\pi_i} = 4/3$$
 $\frac{1}{\pi_i} = 4/3, \frac{1}{1-\pi_i} = 4$

$$\frac{1}{1} = 4/3, \frac{1}{1} = 1$$

Propensity score:
$$\pi_i = P(A = 1 \mid L = L_i)$$

$$\hat{\mathsf{E}}(Y^1) = \frac{1}{N} \sum_{i:A_i=1} \frac{Y_i}{\hat{\pi}_i}
= \frac{1}{N} \left(\sum_{i:A_i=1} \frac{A_i Y_i}{\hat{\pi}_i} + \sum_{i:A_i=0} \frac{A_i Y_i}{\hat{\pi}_i} \right) = \frac{1}{N} \sum_i \frac{A_i Y_i}{\hat{\pi}_i}$$
(1)

$$\hat{E}(Y^{1}) = \frac{1}{N} \sum_{i:A_{i}=1} \frac{Y_{i}}{\hat{\pi}_{i}}$$

$$= \frac{1}{N} \left(\sum_{i:A_{i}=1} \frac{A_{i}Y_{i}}{\hat{\pi}_{i}} + \sum_{i:A_{i}=0} \frac{A_{i}Y_{i}}{\hat{\pi}_{i}} \right) = \frac{1}{N} \sum_{i} \frac{A_{i}Y_{i}}{\hat{\pi}_{i}}$$

$$\hat{E}(Y^{0}) = \frac{1}{N} \sum_{i:A_{i}=0} \frac{Y_{i}}{1 - \hat{\pi}_{i}}$$

$$= \frac{1}{N} \left(\sum_{i:A_{i}=1} \frac{(1 - A_{i})Y_{i}}{1 - \hat{\pi}_{i}} + \sum_{i:A_{i}=0} \frac{(1 - A_{i})Y_{i}}{1 - \hat{\pi}_{i}} \right) = \frac{1}{N} \sum_{i} \frac{(1 - A_{i})Y_{i}}{1 - \hat{\pi}_{i}}$$
(2)

Parametric model: propensity model

Model the treatment assignment

$$\hat{\pi}_i = \hat{\mathsf{P}}(\mathsf{A} = 1 \mid \mathsf{L}) = \mathsf{logit}^{-1} \left(\hat{\alpha} + \hat{\gamma} \mathsf{L} \right)$$

Estimate by inverse probability weighting (IPW)

$$\hat{E}(Y^1) - \hat{E}(Y^0) = \frac{1}{N} \left(\sum_i \frac{A_i Y_i}{\hat{\pi}_i} - \sum_i \frac{(1 - A_i) Y_i}{1 - \hat{\pi}_i} \right)$$

Outcome modeling vs Propensity score modeling

- ▶ If our model captures the true relationship, either will work
- ► Outcome modeling is used more because it typically has lower variance

Outcome modeling vs Propensity score modeling

- ▶ If our model captures the true relationship, either will work
- Outcome modeling is used more because it typically has lower variance
- ► What if our models are wrong?

Outcome modeling vs Propensity score modeling

- ▶ If our model captures the true relationship, either will work
- Outcome modeling is used more because it typically has lower variance
- ► What if our models are wrong?
- ► We can use flexible machine learning methods with low bias when sample size is very large
- ► What if we don't include the right covariates?

We can use both outcome modeling and IPW together

$$\hat{\mathcal{E}}(Y^1) = \frac{1}{N} \left(\sum_{i} \frac{A_i Y_i}{\hat{\pi}_i} - \frac{(A_i - \hat{\pi}_i) \hat{\mathcal{E}}(Y \mid A = 1, L = \ell_i)}{\hat{\pi}_i} \right)$$
(3)

$$\hat{E}(Y^{0}) = \frac{1}{N} \left(\sum_{i} \frac{(1 - A_{i})Y_{i}}{1 - \hat{\pi}_{i}} - \frac{([1 - A_{i}] - [1 - \hat{\pi}_{i}])\hat{E}(Y \mid A = 0, L = \ell_{i})}{1 - \hat{\pi}_{i}} \right)$$
(4)

 $= E(Y_i^1)$

Why is this a good idea?

$$E\left(\frac{A_{i}Y_{i}}{\hat{\pi}_{i}} - \frac{(A_{i} - \hat{\pi}_{i})\hat{E}(Y \mid A = 1, L = \ell_{i})}{\hat{\pi}_{i}}\right)$$

$$= E\left(\frac{Y_{i}^{1} - Y_{i}^{1}\frac{\hat{\pi}_{i}}{\hat{\pi}_{i}} + \frac{A_{i}Y_{i}}{\hat{\pi}_{i}} - \frac{(A_{i} - \hat{\pi}_{i})\hat{E}(Y \mid A = 1, L = \ell_{i})}{\hat{\pi}_{i}}\right)$$

$$= E\left(Y_{i}^{1} + \frac{(A_{i} - \pi_{i})Y_{i}^{1}}{\hat{\pi}_{i}} - \frac{(A_{i} - \hat{\pi}_{i})\hat{E}(Y \mid A = 1, L = \ell_{i})}{\hat{\pi}_{i}}\right)$$

$$= E\left(Y_{i}^{1}\right) + E\left(\frac{(A_{i} - \hat{\pi}_{i})}{\hat{\pi}_{i}}\left[Y_{i}^{1} - \hat{E}(Y \mid A = 1, L = \ell_{i})\right]\right)$$

$$+ \operatorname{E}\left[\operatorname{E}\left(\frac{(A_{i} - \hat{\pi}_{i})}{\hat{\pi}_{i}} \mid L = \ell_{i}\right) \operatorname{E}\left(Y_{i}^{1} - \hat{\operatorname{E}}[Y \mid A = 1, L = \ell_{i}] \mid L = \ell_{i}\right)\right]$$
(5)

Why is this a good idea?

$$\begin{split} \mathsf{E}(\hat{\mathsf{E}}(Y_i^1)) &= \mathsf{E}\left(Y_i^1\right) \\ &+ \mathsf{E}\left[\mathsf{E}\left(\frac{(A_i - \hat{\pi}_i)}{\hat{\pi}_i} \mid L = \ell_i\right) \mathsf{E}\left(Y_i^1 - \hat{\mathsf{E}}[Y \mid A = 1, L = \ell_i] \mid L = \ell_i\right)\right] \end{split}$$

Why is this a good idea?

$$E(\hat{E}(Y_i^1)) = E(Y_i^1)$$

$$+ E\left[E\left(\frac{(A_i - \hat{\pi}_i)}{\hat{\pi}_i} \mid L = \ell_i\right) E\left(Y_i^1 - \hat{E}[Y \mid A = 1, L = \ell_i] \mid L = \ell_i\right)\right]$$
(6)

$$\mathsf{E}\left(\frac{(A_i - \hat{\pi}_i)}{\hat{\pi}_i} \mid L = \ell_i\right) = \frac{\pi_i - \hat{\pi}_i}{\hat{\pi}_i} \tag{7}$$

has expectation zero when $\hat{\pi}_i$ is correctly specified and non-zero

Why is this a good idea?

$$E(\hat{E}(Y_i^1)) = E(Y_i^1)$$

$$+ E\left[E\left(\frac{(A_i - \hat{\pi}_i)}{\hat{\pi}_i} \mid L = \ell_i\right) E\left(Y_i^1 - \hat{E}[Y \mid A = 1, L = \ell_i] \mid L = \ell_i\right)\right]$$
(6)

$$\mathsf{E}\left(Y_{i}^{1} - \hat{\mathsf{E}}[Y \mid A = 1, L = \ell_{i}] \mid L = \ell_{i}\right) \tag{7}$$

has expectation zero when the outcome model is correctly specified and non-zero

- Estimator of ATE is "doubly robust"
 - Second term has expectation 0 if
 - propensity score model is well specified, or
 - ▶ the outcome model is well specified
 - ► Robust against misspecification of either (but not both)
- ► If the outcome model is well specified, using standardization with just the outcome model often has less variance
- ► If the outcome model is not well specified, using standardization with just the outcome model will not be consistent
- ► Using AIPW provides insurance against misspecification

Learning goals for today

At the end of class, you will be able to

- ightharpoonup estimate average causal effects with a parametric model for the outcome $E(Y \mid A, L)$ and treatment
- ► Reason about the bias variance tradeoff
- Use the Augmented IPW estimator to guard against model misspecification

After class:

► Hernán and Robins 2020 Chapter 12.1–12.5, 13, 15.1