Parametric g-Formula

Cornell STSCI / INFO / ILRST 3900 Fall 2024 causal3900.github.io

Oct 2 2025

Learning goals for today

At the end of class, you will be able to

- ightharpoonup estimate average causal effects with a parametric model for the outcome $E(Y \mid A, L)$ and treatment
- ► Reason about the bias variance tradeoff

After class:

► Hernán and Robins 2020 Chapter 12.1–12.5, 13, 15.1

Sample vs population

► Conditional Mean: Average outcome for individuals with specific characteristics

Descriptive	Causal
$E(Y \mid A = a, L = \ell)$	$E(Y^a \mid A=a, L=\ell)$

Sample vs population

 Conditional Mean: Average outcome for individuals with specific characteristics

Descriptive	Causal
$E(Y \mid A = a, L = \ell)$	$E(Y^a \mid A=a, L=\ell)$

► Population quantities: average outcome for **all units in the population** with specific characteristics

$$E(Y \mid A = a, L = \ell)$$

► Sample conditional mean: average outcome for **units in our sample** with specific characteristics

$$\hat{E}(Y \mid A = a, L = \ell)$$

- ► Population quantities can be descriptive or causal
- ► Sample quantities can be descriptive or causal

We use sample quantities to estimate population quantities

$$E(Y^{a=1}) - E(Y^{a=0}) \approx \hat{E}(Y^{a=1}) - \hat{E}(Y^{a=0})$$

We use sample quantities to estimate population quantities

$$\mathsf{E}(Y^{a=1}) - \mathsf{E}(Y^{a=0}) \; \approx \; \hat{\mathsf{E}}(Y^{a=1}) - \hat{\mathsf{E}}(Y^{a=0})$$

$$\mathsf{E}(Y^a) = \sum_{\ell} \underbrace{\mathsf{E}(Y^a \mid L = \ell)}_{\mathsf{Avg \ of \ sub-group}} \quad \times \quad \underbrace{\mathit{Pr}(L = \ell)}_{\mathsf{Prob \ of \ sub-group}}$$

$$\mathsf{E}(Y^{a=1}) - \mathsf{E}(Y^{a=0}) = \sum_{\ell} \left[\mathsf{E}(Y^{a=1} \mid L = \ell) - \mathsf{E}(Y^{a=0} \mid L = \ell) \right] \mathsf{Pr}(L = \ell)$$

$$\hat{\mathsf{E}}(Y^{a}) = \sum_{\ell} \underbrace{\hat{\mathsf{E}}(Y^{a} \mid L = \ell)}_{\mathsf{Avg \ of \ sub-group}} \quad \times \quad \underbrace{\hat{\mathit{Pr}}(L = \ell)}_{\mathsf{Prob \ of \ sub-group}}$$

$$\hat{\mathsf{E}}(Y^a) = \sum_{\ell} \underbrace{\hat{\mathsf{E}}(Y^a \mid L = \ell)}_{\mathsf{Avg of sub-group}} \times \underbrace{\hat{\mathit{Pr}}(L = \ell)}_{\mathsf{Prob of sub-group}}$$

$$\hat{\mathsf{E}}(Y^a) = \hat{\mathsf{E}}(Y^a \mid L = \bullet) \times \frac{4}{8} + \hat{\mathsf{E}}(Y^a \mid L = \bullet) \times \frac{2}{8} + \hat{\mathsf{E}}(Y^a \mid L = \bullet) \times \frac{2}{8}$$

Aggregate the average over sub-groups to get the overall average

$$\hat{\mathsf{E}}(Y^a) = \sum_{\ell} \underbrace{\hat{\mathsf{E}}(Y^a \mid L = \ell)}_{\text{Avg of sub-group}} \times \underbrace{\hat{\mathit{Pr}}(L = \ell)}_{\text{Prob of sub-group}}$$

$$\hat{\mathsf{E}}(Y^a) = \hat{\mathsf{E}}(Y^a \mid L = \bullet) \times \frac{4}{8} + \hat{\mathsf{E}}(Y^a \mid L = \bullet) \times \frac{2}{8} + \hat{\mathsf{E}}(Y^a \mid L = \bullet) \times \frac{2}{8}$$

Calculate the same quantity but sum over individuals

$$\begin{split} \hat{E}(Y^{a}) &= \left(\hat{E}(Y^{a} \mid L = \mathsf{color}_{1}) + \hat{E}(Y^{a} \mid L = \mathsf{color}_{2}) + \hat{E}(Y^{a} \mid L = \mathsf{color}_{3}) \right. \\ &+ \hat{E}(Y^{a} \mid L = \mathsf{color}_{4}) + \hat{E}(Y^{a} \mid L = \mathsf{color}_{5}) + \hat{E}(Y^{a} \mid L = \mathsf{color}_{6}) \\ &+ \hat{E}(Y^{a} \mid L = \mathsf{color}_{7}) + \hat{E}(Y^{a} \mid L = \mathsf{color}_{8}) \right) / 8 \end{split}$$

$$\hat{\mathsf{E}}(Y^a) = \sum_{\ell} \underbrace{\hat{\mathsf{E}}(Y^a \mid L = \ell)}_{\mathsf{Avg of sub-group}} \times \underbrace{\hat{\mathsf{Pr}}(L = \ell)}_{\mathsf{Prob of sub-group}}$$

$$= \frac{1}{n} \sum_{i} \underbrace{\hat{\mathsf{E}}(Y^a \mid L = \ell_i)}_{\mathsf{Avg of sub-group for unit i}}$$

$$= \frac{1}{n} \sum_{i} \underbrace{\hat{\mathsf{E}}(Y \mid A = a, L = \ell_i)}_{\mathsf{Avg of sub-group for unit i}}$$

Nonparametric estimation

Causal assumptions

Nonparametric estimation

Causal assumptions

$$L \xrightarrow{A \to Y} Y$$

Estimate population quantity with sample quantity

$$\mathsf{E}(Y^a) pprox \hat{\mathsf{E}}(Y^a) = \frac{1}{n} \sum_i \hat{\mathsf{E}}(Y \mid L = \ell_i, A = a)$$

Nonparametric estimation

Causal assumptions

$$L \xrightarrow{A \to Y} Y$$

Estimate population quantity with sample quantity

$$\mathsf{E}(Y^a) pprox \hat{\mathsf{E}}(Y^a) = \frac{1}{n} \sum_i \hat{\mathsf{E}}(Y \mid L = \ell_i, A = a)$$

To estimate $\hat{\mathcal{E}}(Y^{a=1}) - \hat{\mathcal{E}}(Y^{a=0})$ we need observations with both A=1 and A=0 for every observed ℓ_i

Nonparametric estimation breaks down

Nonparametric estimation breaks down

Can't estimate $\hat{E}(Y \mid L = \ell_i, A = a)$ for every sub-group

Model the conditional expectation of Y given L and A

► Linear regression

$$\hat{\mathsf{E}}(\mathsf{Y}\mid \mathsf{L},\mathsf{A}) = \hat{\alpha} + \mathsf{L}'\hat{\gamma} + \mathsf{A}\hat{\beta}$$

Model the conditional expectation of Y given L and A

► Linear regression

$$\hat{\mathsf{E}}(\mathsf{Y}\mid \mathsf{L},\mathsf{A}) = \hat{\alpha} + \mathsf{L}'\hat{\gamma} + \mathsf{A}\hat{\beta}$$

$$\hat{E}(Y_i \mid \mathsf{Test}\;\mathsf{Score}_i, A_i) = .2 + .003 \times \mathsf{Test}\;\mathsf{Score}_i + .2 \times A_i$$

▶ If Test Score_i = 80 and $A_i = 1$ then

$$\hat{E}(Y \mid \text{Test Score}, A) = .2 + .003 \times (80) + .2(1) = .64$$

▶ If Test Score_i = 62 and A_i = 0 then

$$\hat{E}(Y \mid \mathsf{Test} \; \mathsf{Score}, A) = .2 + .003 \times (62) + .2(0) = 0.386$$

Causal assumptions

$$L \xrightarrow{A \to Y} Y$$

Standardization estimator

$$\hat{\mathsf{E}}(Y^{\mathsf{a}}) = \frac{1}{n} \sum_{i} \hat{\mathsf{E}}(Y \mid L = \ell_{i}, A = \mathsf{a})$$

Causal assumptions

$$L \xrightarrow{A \to Y} Y$$

Standardization estimator

$$\hat{\mathsf{E}}(Y^a) = \frac{1}{n} \sum_{i} \hat{\mathsf{E}}(Y \mid L = \ell_i, A = a)$$

Learn a parametric model to predict Y given L and A

$$\hat{\mathsf{E}}(Y\mid L,A) = \hat{\alpha} + L'\hat{\gamma} + A\hat{\beta}$$

Causal assumptions

$$L \xrightarrow{A \to Y} Y$$

Standardization estimator

$$\hat{\mathsf{E}}(Y^a) = \frac{1}{n} \sum_{i} \hat{\mathsf{E}}(Y \mid L = \ell_i, A = a)$$

Learn a parametric model to predict Y given L and A

$$\hat{\mathsf{E}}(\mathsf{Y}\mid \mathsf{L},\mathsf{A}) = \hat{\alpha} + \mathsf{L}'\hat{\gamma} + \mathsf{A}\hat{\beta}$$

For every unit i,

- ► Set the treatment value to a
- ► Predict the outcome

Then average over all units

$$\hat{\mathsf{E}}(Y^1) - \hat{\mathsf{E}}(Y^0) = \left(\frac{1}{n} \sum_{i=1}^n \left(\hat{\alpha} + \hat{\gamma}\ell_i + \hat{\beta} \times 1\right)\right) - \left(\frac{1}{n} \sum_{i=1}^n \left(\hat{\alpha} + \hat{\gamma}\ell_i + \hat{\beta} \times 0\right)\right)$$

$$\hat{\mathsf{E}}(Y^1) - \hat{\mathsf{E}}(Y^0) = \left(\frac{1}{n} \sum_{i=1}^n \left(\hat{\alpha} + \hat{\gamma}\ell_i + \hat{\beta} \times 1\right)\right) \\ - \left(\frac{1}{n} \sum_{i=1}^n \left(\hat{\alpha} + \hat{\gamma}\ell_i + \hat{\beta} \times 0\right)\right) \\ = \frac{1}{n} \sum_{i=1}^n \hat{\beta}$$

$$\hat{\mathsf{E}}(Y^1) - \hat{\mathsf{E}}(Y^0) = \left(\frac{1}{n} \sum_{i=1}^n \left(\hat{\alpha} + \hat{\gamma}\ell_i + \hat{\beta} \times 1\right)\right)$$
$$-\left(\frac{1}{n} \sum_{i=1}^n \left(\hat{\alpha} + \hat{\gamma}\ell_i + \hat{\beta} \times 0\right)\right)$$
$$= \frac{1}{n} \sum_{i=1}^n \hat{\beta}$$
$$= \hat{\beta}$$

Estimator for the effect $E(Y^1) - E(Y^0)$:

$$\hat{\mathsf{E}}(Y^1) - \hat{\mathsf{E}}(Y^0) = \left(\frac{1}{n} \sum_{i=1}^n \left(\hat{\alpha} + \hat{\gamma}\ell_i + \hat{\beta} \times 1\right)\right)$$
$$-\left(\frac{1}{n} \sum_{i=1}^n \left(\hat{\alpha} + \hat{\gamma}\ell_i + \hat{\beta} \times 0\right)\right)$$
$$= \frac{1}{n} \sum_{i=1}^n \hat{\beta}$$
$$= \hat{\beta}$$

With OLS, the parametric g-formula collapses on the coefficient.

The parametric g-formula allows for more complex models

As long as we have a model for predicting $E(Y \mid L, A)$, we can apply the g-formula

- ► Linear models with interaction terms
- ► Other types of regression: logistic regression, poisson regression, etc
- ► Machine learning models
 - ► Deep Neural Networks
 - ► Random forests
 - ▶ etc

- ▶ Bias: The functions we may estimate are not complex enough to capture the "true relationship"
- ► Variance: The model we are fitting is too complex so our estimated parameters change a lot from sample to sample

- ▶ Bias: The functions we may estimate are not complex enough to capture the "true relationship"
- ► Variance: The model we are fitting is too complex so our estimated parameters change a lot from sample to sample

- ▶ Bias: The functions we may estimate are not complex enough to capture the "true relationship"
- ► Variance: The model we are fitting is too complex so our estimated parameters change a lot from sample to sample

- ▶ Bias: The functions we may estimate are not complex enough to capture the "true relationship"
- ► Variance: The model we are fitting is too complex so our estimated parameters change a lot from sample to sample

- ▶ Bias: The functions we may estimate are not complex enough to capture the "true relationship"
- ► Variance: The model we are fitting is too complex so our estimated parameters change a lot from sample to sample

Bias and variance in making cakes:

Figure: High Bias, low variance

Figure: Low bias, High variance

Bias and variance in choosing conditional expectation model

- ► Linear model: 1 parameter per covariate (probably high bias)
- Non-parametric estimate: 2^p means to estimate for p binary covariates (probably high variance)
- ► Other methods are typically somewhere in between
- ► Larger sample allows for more complex models

Bias and variance in choosing causal model

- ► Is a a DAG ever "truly correct"?
- ► Can always add more confounders
- ► Would the bias from the confounders you could add substantially change your claim?
- Including additional confounders makes estimation more difficult

Parametric g-formula: Outcome model recap

$$L \xrightarrow{A \to Y} Y$$

- 1. Estimate the outcome mean $E(Y \mid A, L)$ with some model
- 2. Change everyone's treatment to the value of interest
- 3. Predict for everyone
- 4. Take the average

$$\hat{E}(Y^a) = \frac{1}{n} \sum_{i=1}^n \hat{E}(Y \mid L = \ell_i, A = a)$$

- Untreated
- Treated

- Untreated
- Treated

Propensity score:
$$\pi_i = P(A = A_i \mid L = L_i)$$

- Untreated
- Treated

Propensity score:
$$\pi_i = P(A = A_i \mid L = L_i)$$

Inverse probability weight: $w_i = \frac{1}{\pi_i}$

Propensity score:
$$\pi_i = P(A = A_i \mid L = L_i)$$

Inverse probability weight:
$$w_i = \frac{1}{\pi_i}$$

Propensity score:
$$\pi_i = P(A = A_i \mid L = L_i)$$

Inverse probability weight: $w_i = \frac{1}{\pi_i}$

Model the treatment assignment

$$\hat{\mathsf{P}}(\mathsf{A}=1\mid \mathsf{L}) = \mathsf{logit}^{-1}\left(\hat{\alpha} + \hat{\gamma}\mathsf{L}\right)$$

Predict the propensity score for each unit

$$\hat{\pi}_{i} = \begin{cases} \log i t^{-1} \left(\hat{\alpha} + \hat{\gamma} L \right) & \text{if } A_{i} = 1 \\ 1 - \log i t^{-1} \left(\hat{\alpha} + \hat{\gamma} L \right) & \text{if } A_{i} = 0 \end{cases}$$

Estimate by inverse probability weighting

$$\hat{\mathsf{E}}(Y^a) = \frac{1}{N} \sum_{i:A:=a} \frac{Y_i}{\hat{\pi}_i}$$

Learning goals for today

At the end of class, you will be able to

- ightharpoonup estimate average causal effects with a parametric model for the outcome $E(Y \mid A, L)$ and treatment
- ► Reason about the bias variance tradeoff

After class:

► Hernán and Robins 2020 Chapter 12.1–12.5, 13, 15.1