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Learning goals for today

At the end of class, you will be able to

P estimate average causal effects with a parametric model for
the outcome E(Y | A, L) and treatment

» Reason about the bias variance tradeoff

After class:
» Herndn and Robins 2020 Chapter 12.1-12.5, 13, 15.1
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Sample vs population

» Conditional Mean: Average outcome for individuals with
specific characteristics

Descriptive Causal
E(Y|A=a,L="0) | E(Y°|A=a,L=)
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Sample vs population

» Conditional Mean: Average outcome for individuals with
specific characteristics

Descriptive Causal
E(Y|A=a,L="0) | E(Y°|A=a,L=)

» Population quantities: average outcome for all units in the
population with specific characteristics

E(Y|A=a,L=10)

» Sample conditional mean: average outcome for units in our
sample with specific characteristics

E(Y|A=a,L=1{)

» Population quantities can be descriptive or causal

» Sample quantities can be descriptive or causal
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Standardization

We use sample quantities to estimate population quantities

E(Y*™!) — E(Y*™%) =~ E(Y*=!) - E(Y*0)
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Standardization

We use sample quantities to estimate population quantities
E(Y?™)) — E(Y*0) ~ E(Y*!) - E(Y*?)
Aggregate the average over sub-groups to get the overall average
ZE (Y2 |L=0) x  Pr(lL=2)

———
Avg of sub-group Prob of sub-group

E(Y*) —E(Y*0) =Y [E(Y* T L=10) - E(Y*™°| L=0)] Pr(L=10)
4
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Standardization

Aggregate the average over sub-groups to get the overall average
E(Y)=> E(Y?|L=0) x  Pr(L=1)
—_———

——
¢ Avg of sub-group Prob of sub-group
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Standardization

Aggregate the average over sub-groups to get the overall average

E(Y)=> E(Y?|L=0) x  Pr(L=1)

——
¢ Avg of sub-group Prob of sub-group

~ A 4 4 2 4
E(ya):E(Ya|L:o)><§~|—E(Y"”|L:o)><§+E(Y"|L:o)><

| N

Calculate the same quantity but sum over individuals
E(Y?) = (E(Ya | L = color) + E(Y? | L = colorz) + E(Y? | L = colors)
+E(Y? | L = colors) + E(Y? | L = colors) + E(Y? | L = colors)
+E(Y? | L= color) + E(Y? | L = colors) ) /8
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Standardization

Aggregate the average over sub-groups to get the overall average
E(Y)=) E(Y°|L=0) x  Pr(L=1)
N——

——
¢ Avg of sub-group Prob of sub-group

_1 E(ya — 9.
=23 EIL=1)

i Avg of sub-group for unit i

1 ~
:;Z E(Y|A=a,L={¢)

i

Avg of sub-group for unit i
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Nonparametric estimation

Causal assumptions
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Nonparametric estimation
Causal assumptions
S
L—A—Y

Estimate population quantity with sample quantity

A

E(Y?) ~ E(Y?) = ZE (Y|L=1t;,A=a)
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Nonparametric estimation
Causal assumptions
S
L—A—Y

Estimate population quantity with sample quantity

A

E(Y?) ~ E(Y?) = ZE (Y|L=t,A=a)

To estimate £(Y2=1) — E(Y2=0) we need observations with both
A =1 and A = 0 for every observed /;
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Nonparametric estimation breaks down

Sex L

Race Lo

Mom Education L3
Dad Education L4

Income Ls
Wealth Lg
Test Percentile L7 A Y
College Spouse
Degree at Age 35
by Age 25 Has Degree
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Nonparametric estimation breaks down

Can't estimate E(Y | L=¢;,A = a) for every sub-group

Nodad  Nomom

<HS  Namom

] Honscroo  Nomom

Some college N mom

Colege  Nomom
Nodad  <HS
Hs <Hs
Hihschool  <HS

Somecollege  <HS

College <Hs

Nodad  High school

<HS  High school

High school _High school

Some college. High school

College High school

Nodad  Some college

T <5 somecolege

] ighshoot Some cotege

] Some cotegs Some catege

College  Some college

Nodad  College

] aws colee

] Honshool  colege

— somecoliege  Callege

Colege  Callege
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Parametric estimation: Qutcome model

Model the conditional expectation of Y given L and A

» Linear regression

E(Y | LAY =a+ L4+ AB
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Parametric estimation: Qutcome model

Model the conditional expectation of Y given L and A

» Linear regression

E(Y | LAY =a+ L4+ AB
IAE(Y,- | Test Score;, A;) = .2 +.003 x Test Score; + .2 X A;

» If Test Score; = 80 and A; = 1 then
E(Y | Test Score, A) = .2 +.003 x (80) +.2(1) = .64
» |If Test Score; = 62 and A; = 0 then

E(Y | Test Score, A) = .2 +.003 x (62) +.2(0) = 0.386
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Parametric estimation: Qutcome model

Causal assumptions
7
L—A—>Y
Standardization estimator

E(Y?) = ZE Y |L=1¢,A=a)
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Parametric estimation: Qutcome model

Causal assumptions
7
L—A—>Y
Standardization estimator

E(Y?) = ZE Y|L=1(,A=a)

Learn a parametric model to predict Y given L and A

E(Y | LA =a+ L4+ AB
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Parametric estimation: Outcome model
Causal assumptions
T
L—A—Y
Standardization estimator

E(Y?) = ZE Y|L=1(,A=a)

Learn a parametric model to predict Y given L and A
E(Y | LA =a+ L4+ AB

For every unit /,
» Set the treatment value to a
» Predict the outcome

Then average over all units
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The parametric g-formula: Connection to B
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The parametric g-formula: Connection to 3
Estimator for the effect E(Y1) — E(Y?):
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The parametric g-formula: Connection to 3
Estimator for the effect E(Y1) — E(Y?):

E(YY) —E(Y?) = (,172": (A + 44 + B x 1))

i=1

1< R
— (niz_;(w%wxo))
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The parametric g-formula: Connection to 3
Estimator for the effect E(Y1) — E(Y?):

E(YY) — E(Y?) = (,172": (d+%-+3 X 1))

i=1

— (}7;<&+%;+Bx0>>
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The parametric g-formula: Connection to 3
Estimator for the effect E(Y1) — E(Y?):
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The parametric g-formula: Connection to 3
Estimator for the effect E(Y1) — E(Y?):

E(YY) — E(Y?) = (,172": (d+%-+3 X 1))

i=1

— (}7;<&+%;+Bx0>>
1 4
—";B

=0

With OLS, the parametric g-formula collapses on the coefficient.
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The parametric g-formula allows for more complex models

As long as we have a model for predicting E(Y | L, A), we can
apply the g-formula

P Linear models with interaction terms

» Other types of regression: logistic regression, poisson
regression, etc

» Machine learning models

» Deep Neural Networks
» Random forests
> etc
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Bias Variance trade-off

In statistics, the bias variance trade off is a fundamental constraint
» Bias: The functions we may estimate are not complex enough
to capture the “true relationship”

» Variance: The model we are fitting is too complex so our
estimated parameters change a lot from sample to sample
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Bias Variance trade-off

In statistics, the bias variance trade off is a fundamental constraint
» Bias: The functions we may estimate are not complex enough
to capture the “true relationship”
» Variance: The model we are fitting is too complex so our
estimated parameters change a lot from sample to sample
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Bias Variance trade-off

In statistics, the bias variance trade off is a fundamental constraint
» Bias: The functions we may estimate are not complex enough
to capture the “true relationship”
» Variance: The model we are fitting is too complex so our
estimated parameters change a lot from sample to sample
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Bias Variance trade-off

In statistics, the bias variance trade off is a fundamental constraint
» Bias: The functions we may estimate are not complex enough
to capture the “true relationship”
» Variance: The model we are fitting is too complex so our
estimated parameters change a lot from sample to sample
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Bias Variance trade-off

Bias and variance in making cakes:

;
/ 3 N

L £ %

, 1 2

Figure: High Bias, low variance gi‘!i s ‘l

Figure: Low bias, High variance
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Bias and variance in choosing conditional expectation
model

» Linear model: 1 parameter per covariate (probably high bias)

» Non-parametric estimate: 2P means to estimate for p binary
covariates (probably high variance)

» Other methods are typically somewhere in between

» Larger sample allows for more complex models
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Bias and variance in choosing causal model

» Is a a DAG ever “truly correct”?
» Can always add more confounders

» Would the bias from the confounders you could add
substantially change your claim?

» Including additional confounders makes estimation more
difficult
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Parametric g-formula: Outcome model recap
LS5 Ay

Estimate the outcome mean E(Y | A, L) with some model
Change everyone's treatment to the value of interest

Predict for everyone

B

Take the average

E(Y?) = ZE Y |L=1(;,A=a)
11
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Inverse probability of treatment weighting

@ Untreated
@ Treated

20/22



Inverse probability of treatment weighting

@ Untreated
@ Treated

Propensity score:

W,:P(A:A,’L:L,)
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Inverse probability of treatment weighting

@ Untreated
@ Treated

Propensity score: m=P(A=A|L=1L)

Inverse probability weight: Wi = —
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Inverse probability of treatment weighting

——————————————————————————————

@ Untreated 3 L=0 3 3 L =1 3
@ Treated i 4/3 | | 4 3
1 ® o @,
! 4/3 | ! :
1 ® | | o |
| : | 4/3 :
| 4 | ! ‘
| @3 1 ® 4z 1
l ® | [ !

Propensity score: m=P(A=A|L=1L)

Inverse probability weight: Wi = —
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Inverse probability of treatment weighting

——————————————————————————————

@® Untreated 3 L=0 3 3 L=1 3
@ Treated ! 4/3 | ! é |

| o ! | 4/3 !
************* N 4/3 | ! |
I . ! I ! . I
\ pseudo-population | o ‘ ' 4/3 |
| i 4 | |
LT Ay @'/ @ 43 ;
************* ‘ ® . o |

Propensity score: m=P(A=A|L=1L)

Inverse probability weight: Wi = —

20/22



Model the treatment assignment

P(A=1]L) = logit™ (& +4L)

Predict the propensity score for each unit

i =

. Jlogit™ (& +4L) if Ay =1
1 —logit™*(&+4L) if A =0

Estimate by inverse probability weighting
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Learning goals for today

At the end of class, you will be able to

P estimate average causal effects with a parametric model for
the outcome E(Y | A, L) and treatment

» Reason about the bias variance tradeoff

After class:
» Herndn and Robins 2020 Chapter 12.1-12.5, 13, 15.1
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