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Learning goals for today

At the end of class, you will be able to

▶ estimate average causal effects with a parametric model for
the outcome E(Y | A, L) and treatment

▶ Reason about the bias variance tradeoff

After class:

▶ Hernán and Robins 2020 Chapter 12.1–12.5, 13, 15.1
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Sample vs population

▶ Conditional Mean: Average outcome for individuals with
specific characteristics

Descriptive Causal

E (Y | A = a, L = ℓ) E (Y a | A = a, L = ℓ)

▶ Population quantities: average outcome for all units in the
population with specific characteristics

E (Y | A = a, L = ℓ)

▶ Sample conditional mean: average outcome for units in our
sample with specific characteristics

Ê (Y | A = a, L = ℓ)

▶ Population quantities can be descriptive or causal

▶ Sample quantities can be descriptive or causal
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Standardization

We use sample quantities to estimate population quantities

E(Y a=1)− E(Y a=0) ≈ Ê(Y a=1)− Ê(Y a=0)

Aggregate the average over sub-groups to get the overall average

E(Y a) =
∑
ℓ

E(Y a | L = ℓ)︸ ︷︷ ︸
Avg of sub-group

× Pr(L = ℓ)︸ ︷︷ ︸
Prob of sub-group

E(Y a=1)− E(Y a=0) =
∑
ℓ

[
E(Y a=1 | L = ℓ)− E (Y a=0 | L = ℓ)

]
Pr(L = ℓ)
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Standardization

Aggregate the average over sub-groups to get the overall average

Ê(Y a) =
∑
ℓ

Ê(Y a | L = ℓ)︸ ︷︷ ︸
Avg of sub-group

× P̂r(L = ℓ)︸ ︷︷ ︸
Prob of sub-group

1 2 3 4 5 6 7 8

Ê(Y a) = Ê(Y a | L = )× 4

8
+ Ê(Y a | L = )× 2

8
+ Ê(Y a | L = )× 2

8

Calculate the same quantity but sum over individuals

Ê(Y a) =
(
Ê(Y a | L = color1) + Ê(Y a | L = color2) + Ê(Y a | L = color3)

+ Ê(Y a | L = color4) + Ê(Y a | L = color5) + Ê(Y a | L = color6)

+Ê(Y a | L = color7) + Ê(Y a | L = color8)
)
/8
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Ê(Y a | L = ℓ)︸ ︷︷ ︸
Avg of sub-group

× P̂r(L = ℓ)︸ ︷︷ ︸
Prob of sub-group

1 2 3 4 5 6 7 8
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Standardization

Aggregate the average over sub-groups to get the overall average

Ê(Y a) =
∑
ℓ

Ê(Y a | L = ℓ)︸ ︷︷ ︸
Avg of sub-group

× P̂r(L = ℓ)︸ ︷︷ ︸
Prob of sub-group

=
1

n

∑
i

Ê(Y a | L = ℓi )︸ ︷︷ ︸
Avg of sub-group for unit i

=
1

n

∑
i

Ê(Y | A = a, L = ℓi )︸ ︷︷ ︸
Avg of sub-group for unit i
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Nonparametric estimation

Causal assumptions

L A Y

Estimate population quantity with sample quantity

E(Y a) ≈ Ê(Y a) =
1

n

∑
i

Ê(Y | L = ℓi ,A = a)

To estimate Ê (Y a=1)− Ê(Y a=0) we need observations with both
A = 1 and A = 0 for every observed ℓi
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Nonparametric estimation breaks down

A Y

L1
L2
L3
L4
L5
L6
L7

College
Degree

by Age 25

Spouse
at Age 35
Has Degree

Sex
Race

Mom Education
Dad Education

Income
Wealth

Test Percentile
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Nonparametric estimation breaks down

Can’t estimate Ê(Y | L = ℓi ,A = a) for every sub-group

Female Male

College College
No College No College

Female Male

College College
No College No College

Female Male

College College
No College No College

Female Male

College College
No College No College

Female Male

College College

No College No College

Female Male

College College
No College No College

Female Male

College College
No College No College

Female Male

College College

No College No College

Female Male

College College
No College No College

Female Male

College College
No College No College

Female Male

College College
No College No College

Female Male

College College
No College No College

Female Male

College College
No College No College

Female Male

College College
No College No College

Female Male

College College
No College No College

Female Male

College College
No College No College

Female Male

College College
No College No College

Female Male

College College

No College No College

Female Male

College College
No College No College

Female Male

College College
No College No College

Female Male

College College

No College No College

Male

College
No College

Female Male

College College

No College No College

Female Male

College College

No College No College

Female Male

College College
No College No College

Female Male

College College
No College No College

Female Male

College College
No College No College

Female Male

College College
No College No College

Female Male

College College
No College No College

Female Male

College College
No College No College

Female Male

College College
No College No College

Female Male

College College
No College No College

Female Male

College College
No College No College

Female Male

College College
No College No College

Female Male

College College
No College No College

Female Male

College College
No College No College

Female Male

College College
No College No College

Female Male

College College
No College No College

Female Male

College College
No College No College

Female Male

College College
No College No College

Female Male

College College
No College No College

Female Male

College College
No College No College

Female Male

College College

No College No College

Female Male

College College

No College No College

Female Male

College College

No College No College

Female Male

College College
No College No College

Female Male

College College
No College No College

Female Male

College College
No College No College

Female Male

College College

No College No College

Female Male

College College
No College No College

Female Male

College College
No College No College

Female Male

College College

No College No College

Female Male

College College

No College No College

Female Male

College College
No College No College

Female Male

College College
No College No College
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Female Male

College
College
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Female Male
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Female Male
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Female Male
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Female Male
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Female Male
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Female Male
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Hispanic Non−Hispanic Black Non−Hispanic Non−Black

No dad No mom

< HS No mom

High school No mom

Some college No mom

College No mom

No dad < HS

< HS < HS

High school < HS

Some college < HS

College < HS

No dad High school

< HS High school

High school High school

Some college High school

College High school

No dad Some college

< HS Some college

High school Some college

Some college Some college

College Some college

No dad College

< HS College

High school College

Some college College

College College

8 / 22



Parametric estimation: Outcome model

Model the conditional expectation of Y given L and A

▶ Linear regression

Ê(Y | L,A) = α̂+ L′γ̂ + Aβ̂

Ê(Yi | Test Scorei ,Ai ) = .2 + .003× Test Scorei + .2× Ai

▶ If Test Scorei = 80 and Ai = 1 then

Ê(Y | Test Score,A) = .2 + .003× (80) + .2(1) = .64

▶ If Test Scorei = 62 and Ai = 0 then

Ê(Y | Test Score,A) = .2 + .003× (62) + .2(0) = 0.386
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Parametric estimation: Outcome model

Causal assumptions

L A Y

Standardization estimator

Ê(Y a) =
1

n

∑
i

Ê(Y | L = ℓi ,A = a)

Learn a parametric model to predict Y given L and A

Ê(Y | L,A) = α̂+ L′γ̂ + Aβ̂

For every unit i ,

▶ Set the treatment value to a

▶ Predict the outcome

Then average over all units
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The parametric g-formula: Connection to β̂

Estimator for the effect E(Y 1)− E(Y 0):

Ê(Y 1)− Ê(Y 0) =

(
1

n

n∑
i=1

(
α̂+ γ̂ℓi + β̂ × 1

))

−

(
1

n

n∑
i=1

(
α̂+ γ̂ℓi + β̂ × 0

))

=
1

n

n∑
i=1

β̂

= β̂

With OLS, the parametric g-formula collapses on the coefficient.
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The parametric g-formula allows for more complex models

As long as we have a model for predicting E (Y | L,A), we can
apply the g-formula

▶ Linear models with interaction terms

▶ Other types of regression: logistic regression, poisson
regression, etc

▶ Machine learning models
▶ Deep Neural Networks
▶ Random forests
▶ etc
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Bias Variance trade-off

In statistics, the bias variance trade off is a fundamental constraint

▶ Bias: The functions we may estimate are not complex enough
to capture the “true relationship”

▶ Variance: The model we are fitting is too complex so our
estimated parameters change a lot from sample to sample
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Bias Variance trade-off

Bias and variance in making cakes:

Figure: High Bias, low variance

Figure: Low bias, High variance
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Bias and variance in choosing conditional expectation
model

▶ Linear model: 1 parameter per covariate (probably high bias)

▶ Non-parametric estimate: 2p means to estimate for p binary
covariates (probably high variance)

▶ Other methods are typically somewhere in between

▶ Larger sample allows for more complex models
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Bias and variance in choosing causal model

▶ Is a a DAG ever “truly correct”?

▶ Can always add more confounders

▶ Would the bias from the confounders you could add
substantially change your claim?

▶ Including additional confounders makes estimation more
difficult
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Parametric g-formula: Outcome model recap

L A Y

1. Estimate the outcome mean E(Y | A, L) with some model

2. Change everyone’s treatment to the value of interest

3. Predict for everyone

4. Take the average

Ê(Y a) =
1

n

n∑
i=1

Ê(Y | L = ℓi ,A = a)
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L A Y
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L A Y
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L A Y
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Inverse probability of treatment weighting

L = 0 L = 1• Untreated

• Treated

•
••

•
• •

•
•
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•
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•
••

•
4/3
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4/3

• •
•

•
4/3

4/3

4/3

4

Propensity score: πi = P(A = Ai | L = Li)

Inverse probability weight: wi =
1
πi

pseudo-population

L A Y
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Model the treatment assignment

P̂(A = 1 | L) = logit−1 (α̂+ γ̂L)

Predict the propensity score for each unit

π̂i =

{
logit−1 (α̂+ γ̂L) if Ai = 1

1− logit−1 (α̂+ γ̂L) if Ai = 0

Estimate by inverse probability weighting

Ê(Y a) =
1

N

∑
i :Ai=a

Yi

π̂i
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Learning goals for today

At the end of class, you will be able to

▶ estimate average causal effects with a parametric model for
the outcome E(Y | A, L) and treatment

▶ Reason about the bias variance tradeoff

After class:

▶ Hernán and Robins 2020 Chapter 12.1–12.5, 13, 15.1
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