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Learning goals for today

At the end of class, you will be able to
▶ estimate average causal effects with a parametric model

▶ for the outcome E(Y | A, L⃗)
▶ for the treatment P(A | L⃗)

After class:

▶ Hernán and Robins 2020 Chapter 12.1–12.5, 13, 15.1
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Sample vs population

▶ Conditional Mean: Average outcome for individuals with
specific characteristics

Descriptive Causal

E (Y | A = a, L⃗ = ℓ⃗) E (Y a | A = a, L⃗ = ℓ⃗)

▶ Population quantities: average outcome for all units in the
population with specific characteristics

E (Y | A = a, L⃗ = ℓ⃗)

▶ Sample conditional mean: average outcome for units in our
sample with specific characteristics

Ê (Y | A = a, L⃗ = ℓ⃗)

▶ Population quantities can be descriptive or causal

▶ Sample quantities can be descriptive or causal
2 / 19



Sample vs population

In the experiment from Problem Set 2, what is a population
quantity and what is a sample quantity?
▶ The call back rate for the name Lakisha Washington if we

were to send a resume to every single employer in the USA
▶ The call back rate for the name Lakisha Washington for the

5000 employers which were sent resumes
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Standardization

Aggregate the average over sub-groups to get the overall average

E(Y a) =
∑
ℓ

E(Y a | L⃗ = ℓ⃗)︸ ︷︷ ︸
Avg of sub-group

× Pr(L⃗ = ℓ⃗)︸ ︷︷ ︸
Prob of sub-group

1 2 3 4 5 6 7 8

E(Y a) = E(Y a | L = )× 4

8
+ E(Y a | L = )× 2

8
+ E(Y a | L = )× 2

8

Calculate the same quantity but sum over individuals

E(Y a) = (E(Y a | L = color1) + E(Y a | L = color2) + E(Y a | L = color3)

+ E(Y a | L = color4) + E(Y a | L = color5) + E(Y a | L = color6)

+E(Y a | L = color7) + E(Y a | L = color8)) /8
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Standardization

Aggregate the average over sub-groups to get the overall average

E(Y a) =
∑
ℓ

E(Y a | L⃗ = ℓ⃗)︸ ︷︷ ︸
Avg of sub-group

× Pr(L⃗ = ℓ⃗)︸ ︷︷ ︸
Prob of sub-group

=
1

n

∑
i

E(Y a | L⃗ = ℓ⃗i )︸ ︷︷ ︸
Avg of sub-group for unit i
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Standardization

Aggregate the average over sub-groups to get the overall average

E(Y a) =
1

n

∑
i

E(Y a | L = ℓi )︸ ︷︷ ︸
Avg of sub-group for unit i

When consistency and conditional exchangeability (given L) hold:

E(Y | A = a, L = ℓi )
consis
= E(Y a | A = a, L = ℓi )

exchange
= E(Y a | L = ℓi )

So we can replace E(Y a | L = ℓi ) with E(Y | A = a, L = ℓi ) to get

E(Y a) =
1

n

∑
i

E(Y | L = ℓi ,A = a)
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Nonparametric estimation

Causal assumptions

L⃗ A Y

Population quantity:

E(Y a) =
1

n

∑
i

E(Y | L⃗ = ℓ⃗i ,A = a)

Nonparametric estimator using sample:

Ê(Y a) =
1

n

∑
i

Ê(Y | L⃗ = ℓ⃗i ,A = a)
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Nonparametric estimation breaks down

A Y

L1
L2
L3
L4
L5
L6
L7

College
Degree

by Age 25

Spouse
at Age 35
Has Degree

Sex
Race

Mom Education
Dad Education

Income
Wealth

Test Percentile
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Nonparametric estimation breaks down

Can’t estimate Ê(Y | L⃗ = ℓ⃗i ,A = a) for every sub-group
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Parametric estimation: Outcome model

Model the conditional expectation of Y given L⃗ and A

Ê(Y | L⃗,A) = α̂+ L⃗′ ˆ⃗γ + Aβ̂

Ê(Yi | Test Scorei ,Ai ) = .2 + .003× Test Scorei + .2× Ai

▶ If Test Scorei = 80 and Ai = 1 then

Ê(Y | Test Score,A) = .2 + .003× (80) + .2(1) = .64

▶ If Test Scorei = 62 and Ai = 0 then

Ê(Y | Test Score,A) = .2 + .003× (62) + .2(0) = 0.386
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Parametric estimation: Outcome model

Causal assumptions

L⃗ A Y

Parametric estimator

Ê(Y a) =
1

n

∑
i

Ê(Y | L⃗ = ℓ⃗i ,A = a)

Learn a model to predict Y given L⃗ and A

Ê(Y | L⃗,A) = α̂+ L⃗′ ˆ⃗γ + Aβ̂

For every unit i ,

▶ Set the treatment value to a

▶ Predict the outcome

Then average over all units
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The parametric g-formula: Connection to β̂

Estimator for the effect E(Y 1)− E(Y 0):

Ê(Y 1)− Ê(Y 0) =

(
1

n

n∑
i=1

(
α̂+ γ̂ℓi + β̂ × 1

))

−

(
1

n

n∑
i=1

(
α̂+ γ̂ℓi + β̂ × 0

))

=
1

n

n∑
i=1

β̂

= β̂

With OLS, the parametric g-formula collapses on the coefficient.
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The parametric g-formula allows for more complex models

As long as we have a model for predicting E (Y | L,A), we can
apply the g-formula

▶ Linear models with interaction terms

▶ Other types of regression

▶ Machine learning models
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Parametric g-formula: Outcome model recap

L⃗ A Y

1. Estimate the outcome mean E(Y | A, L⃗) with some model

2. Change everyone’s treatment to the value of interest

3. Predict for everyone

4. Take the average

Ê(Y a) =
1

n

n∑
i=1

Ê(Y | L⃗ = ℓ⃗i ,A = a)
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L⃗ A Y
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L⃗ A Y
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Inverse probability of treatment weighting

L = 0 L = 1• Untreated

• Treated

•
••

•
4/3

4
4/3

4/3

• •
•

•
4/3

4/3

4/3

4

Propensity score: πi = P(A = Ai | L = Li)

Inverse probability weight: wi =
1
πi

pseudo-population

L A Y
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Model the treatment assignment

P̂(A = 1 | L⃗) = logit−1
(
α̂+ ˆ⃗γL⃗

)
Predict the propensity score for each unit

π̂i =

logit−1
(
α̂+ ˆ⃗γL⃗

)
if Ai = 1

1− logit−1
(
α̂+ ˆ⃗γL⃗

)
if Ai = 0

Estimate by inverse probability weighting

Ê(Y a) =
1

N

∑
i :Ai=a

Yi

π̂i
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Learning goals for today

At the end of class, you will be able to
▶ estimate average causal effects with a parametric model

▶ for the outcome E(Y | A, L⃗)
▶ for the treatment P(A | L⃗)

After class:

▶ Hernán and Robins 2020 Chapter 12.1–12.5, 13, 15.1
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