Why model?

Cornell STSCI / INFO / ILRST 3900
 Fall 2023
 causal3900.github.io

26 Sep 2023

Arc of the course

We began by asking causal questions

- Defining counterfactuals

Then we discussed causal assumptions

- Exchangeability and experiments
- Consistency and positivity
- Directed Acyclic Graphs

Arc of the course

We began by asking causal questions

- Defining counterfactuals

Then we discussed causal assumptions

- Exchangeability and experiments
- Consistency and positivity
- Directed Acyclic Graphs

5 weeks

Arc of the course

We began by asking causal questions

- Defining counterfactuals

Then we discussed causal assumptions

- Exchangeability and experiments
- Consistency and positivity
- Directed Acyclic Graphs

5 weeks

0 statistical models

Learning goals for today

At the end of class, you will be able to

- explain the curse of dimensionality
- recognize the possible futility of nonparametric estimation

Motivating a research question ${ }^{1}$

Income inequality across households depends on

1. inequality across individuals
2. how individuals pool into households

A college degree affects (1) and (2)

[^0]
Research question

To what degree does finishing college increase the probability of having a spouse who finished college?

Research question

To what degree does finishing college increase the probability of having a spouse who finished college?

Data. National Longitudinal Survey of Youth 1997

- Probability sample of U.S. non-institutional civilian youth age 12-16 on Dec 311996
- Surveyed annually 1997-2011, then biennially
- $n=8,984$

Data access

To access these data, first

- set your working directory where you will be working
- download two supporting files from us

1. nlsy97. NLSY97 is a tagset file containing the variable names
2. prepare_nlsy97. R is an R script to prepare the data

Data access

Now go to the data distributor

1. Register with the survey
2. Log in to the NLS Investigator
3. Choose the NLSY97 study
4. Upload the tagset nlsy97. NLSY97 that you downloaded from us
5. In the Investigator, download the data. Type to change the file name from default to nlsy97
6. Unzip the file. Drag nlsy97. dat into the folder you will work in
7. In your R console, run the line of code below
this will take about 30 seconds to run

- you will need these R packages: tidyverse and Amelia
source("prepare_nlsy97.R")
In the future, you can now load the data with
d <- readRDS("d.RDS")

Register with the survey

NLS Investigator

Password must be 8 characters or more and contain at least one numeric and one non numeric character. In addition the password must not be based on username.I agree to the NLS Investigator Privacy Policy.

[^1]Register

Choose the NLSY97 study

NLS Investigator

Select the study you want to work with:
NLSY97 (National Longitudinal Survey of Youth 1997) \vee
Select a substudy:
NLSY97 1997-2019 (rounds 1-19) \vee
Released November 01, 2021

Upload our tagset

Choose Tagsets

Upload Tagset (from PC):

Choose File No file chosen
Upload

Download the data

Choose Tagsets

Customize your advanced download:Create Download of DataTagset (list of selected variables)
SAS® control file (includes the datafile of selected variables)SPSS® control file (includes the datafile of selected variables)STATA® dictionary file of selected variables

$R ®$ Source code (includes the datafile of selected variables)Codebook of selected variablesShort Description FileComma-delimited datafile of selected variables (to be read in Excel, etc.) Column headers -- Use OReference Number OQuestion Name (does not guarantee uniqueness)Create Frequency / TableApply Universe Restrictors (How to use Universe Restrictors)Notify me by email when download is complete.
Filename: nlsy97
Filename must only con alpha, numeric,
hyphen or underscore c
Download

Run our code

This code prepares the data file (one time, takes about 30 seconds) source("prepare_NLSY97.R")

This code loads the prepared data (after the above, very fast) d <- readRDS("d.RDS")

Research question

To what degree does finishing college increase the probability of having a spouse who finished college?

Research question

To what degree does finishing college increase the probability of having a spouse who finished college?

Treatment A : Finished BA by age 25

- Outcome Y : Spouse or partner at age 30-40 holds a BA
- 0 if no spouse or partner, or partner with no BA
- 1 if spouse or partner holds a BA

Research question

To what degree does finishing college increase the probability of having a spouse who finished college?

Treatment A : Finished BA by age 25

- Outcome Y : Spouse or partner at age 30-40 holds a BA
- 0 if no spouse or partner, or partner with no BA
- 1 if spouse or partner holds a BA

Research question

To what degree does finishing college increase the probability of having a spouse who finished college?

Treatment A : Finished BA by age 25

- Outcome Y : Spouse or partner at age 30-40 holds a BA
- 0 if no spouse or partner, or partner with no BA
- 1 if spouse or partner holds a BA

Adjustment procedure

1) Estimate within subgroups defined by $\{\operatorname{sex}\}$
2) Aggregate over the subgroups

Data

```
d %>%
    select(sex, a, y) %>%
    print(n = 8)
# A tibble: 7,771 x 3
    sex a y
    <chr> <chr> <lgl>
1 Female college FALSE
2 Male no_college FALSE
3 Female no_college FALSE
4 \text { Male no_college TRUE}
5 Female no_college FALSE
6 ~ M a l e ~ n o - c o l l e g e ~ F A L S E ~
7 Female college FALSE
8 Male college TRUE
# i 7,763 more rows
```


1) Estimate in subgroups

```
ybar_in_subgroups <- d %>%
    # Group by confounders and treatment
    group_by(sex, a) %>%
    # Summarize mean outcomes and nber of cases
    summarize(ybar = mean(y),
            n = n(),
            .groups = "drop") %>%
    print()
# A tibble: 4 x 4
    sex a ybar n
    <chr> <chr> <dbl> <int>
1 Female college 0.467 896
2 Female no_college 0.102 2953
3 Male college 0.614 637
4 Male no_college 0.174 3285
```


1) Estimate in subgroups

\# A tibble: 4×4			
	sex a	ybar	n
	<chr>	<chr>	<dbl>
<int>			
1	Female college	0.467	896
2 Female	no_college	0.102	2953
3 Male college	0.614	637	
4 Male	no_college	0.174	3285

1) Estimate in subgroups

```
# A tibble: 4 x 4
    sex a ybar ren
1 Female college 0.467 896
2 Female no_college 0.102 2953
3 Male college 0.614 637
4 Male no_college 0.174 3285
pivoted <- ybar_in_subgroups %>%
    pivot_wider(names_from = a,
    values_from = c("ybar","n")) %>%
    print()
# A tibble: 2 x 5
    sex ybar_college ybar_no_college n_college n_no_college
    <chr> <dbl> <dbl> <int> <int>
1 Female 0.467 0.102 896 2953
2 Male 0.614 0.174 637 3285
```


1) Estimate in subgroups

1) Estimate in subgroups

```
# A tibble: 2 x 5
    sex ybar_college ybar_no_college n_college n_no_college
    <chr> <dbl> <dbl> <int> <int>
1 Female 0.467 0.102 896 2953
2 Male 0.614 0.174 637 3285
cate <- pivoted %>%
    mutate(conditional_effect = ybar_college - ybar_no_college,
    n_in_stratum = n_college + n_no_college) %>%
    select(sex, conditional_effect, n_in_stratum) %>%
    print()
# A tibble: 2 x 3
    sex conditional_effect n_in_stratum
    <chr> <dbl> <int>
1 Female 0.365 3849
2 Male
    0.440 3922
```


2) Aggregate over subgroups

```
# A tibble: 2 x 3
    sex conditional_effect n_in_stratum
    <chr> <dbl> <int>
1 Female 0.365 3849
2 Male
0.440
    3922
```


2) Aggregate over subgroups

```
# A tibble: 2 x 3
    sex conditional_effect n_in_stratum
    <chr> <dbl> <int>
1 Female 0.365 3849
2 Male 0.440 3922
cate %>%
    summarize(population_average_effect = weighted.mean(
        conditional_effect,
        w = n_in_stratum
    ))
# A tibble: 1 x 1
    population_average_effect
        <dbl>
1
    0.403
```


Recap: Intuition

Female
Male

Recap: In code

```
d %>%
    # Group by confounders and treatment
    group_by(sex, a) %>%
    # Estimate within subgroups
    summarize(ybar = mean(y),
        n = n(),
            .groups = "drop") %>%
    pivot_wider(names_from = a,
        values_from = c("ybar","n")) %>%
    mutate(conditional_effect = ybar_college - ybar_no_college,
        n_in_stratum = n_college + n_no_college) %>%
    # Aggregate over subgroups
    summarize(population_average_effect = weighted.mean(
        conditional_effect,
        w = n_in_stratum
    ))
# A tibble: 1 x 1
    population_average_effect
        <dbl>
1
        0.403
```


Adjust for sex and race

Adjust for sex and race

1) Estimate effects within subgroups defined by $\{$ sex, race $\}$
2) Aggregate over subgroups

Adjust for sex and race

Hispanic

Female
Male

Female
Male

Adjust for sex and race

Adjust for sex, race, mom education

1) Estimate effects within subgroups defined by $\{$ race,sex, mom education $\}$
2) Aggregate over subgroups

Adjust for sex, race, mom education

Adjust for sex, race, mom education

Adjust for sex, race, mom education, dad education

1) Estimate effects within subgroups defined by \{race,sex, mom education, dad education\}
2) Aggregate over subgroups

Adjust for sex, race, mom education, dad education

Non-Hispanic Non-Black		
No College ${ }^{\text {a }}$ - No College	No dad	No mom
	$<\mathrm{HS}$	No mom
	High school	No mom
	Some college	No mom
	College	No mom
No College \quad No College	No dad	$<\mathrm{HS}$
No College - No College	$<\mathrm{HS}$	$<\mathrm{HS}$
No College - ${ }^{\text {N }}$ Nocollege	High school	$<\mathrm{HS}$
	Some college	$<\mathrm{HS}$
- - - - - CoClililepe - - - - - No College	College	$<\mathrm{HS}$
	No dad	High school
	$<\mathrm{HS}$	High school
	High school	High school
	Some college	High school
	College	High school
	No dad	Some college
	$<\mathrm{HS}$	Some college
	High school	Some college
	Some college	Some college
	College	Some college
	No dad	College
	$<\mathrm{HS}$	College
	High school	College
	Some college	College
	College	College

Adjust for sex, race, mom education, dad education

Non-Hispanic Non-Black		
No College ${ }^{\text {a }}$ - No College	No dad	No mom
No Colege ${ }^{\text {N }}$ - No College	$<\mathrm{HS}$	No mom
	High school	No mom
	Some college	No mom
	College	No mom
No College $\quad[$ No College	No dad	$<\mathrm{HS}$
No College - No College	$<\mathrm{HS}$	$<\mathrm{HS}$
	High school	$<\mathrm{HS}$
	Some college	< HS
- - - - NoColiejee - - - - - No College	College	$<\mathrm{HS}$
	No dad	High school
	$<\mathrm{HS}$	High school
	High school	High school
	Some college	High school
	College	High school
	No dad	Some college
	$<\mathrm{HS}$	Some college
	High school	Some college
	Some college	Some college
- - - $\mathrm{NO}_{\text {college }}$	College	Some college
	No dad	College
	$<\mathrm{HS}$	College
	High school	College
- - Colege	Some college	College
	College	College

Curse of dimensionality: Unpopulated cells

\# A tibble: 147 x 6							
sex race	mom_educ	dad_educ	n_college n_no_college				
	<chr>	<chr>	<fct>	<fct>	<int>	\quad	<int>
---:	:---	---:					

Curse of dimensionality

4.2\% of the sample

is in a subgroup with either 0 treated or 0 untreated units

Curse of dimensionality

Curse of dimensionality

100% of the sample

is in a subgroup with either 0 treated or 0 untreated units

Learning goals for today

At the end of class, you will be able to

- explain the curse of dimensionality
- recognize the possible futility of nonparametric estimation

After class, you should

- read Hernán \& Robins Ch 11
- attend discussion: you will learn to use models!

[^0]: ${ }^{1}$ Mare 1991, Schwartz 2013

[^1]: * Required field

