Asking Good Causal Questions: Positivity and Consistency

Cornell STSCI / INFO / ILRST 3900 Fall 2023 causal3900.github.io

19 Sep 2024

Learning goals for today

At the end of class, you will be able to ask good causal questions.

Good causal questions

- ► involve precise treatments
- ▶ with clarity about interference
- involve treatments that exist

(consistency assumption) (consistency assumption) (positivity assumption)

After class:

- Hernán and Robins 2020 Chapter 3.3-3.6
- Optional: Does water kill? A call for less casual causal inferences. (Hernán, M. 2016)

Good causal questions involve **precise treatments**:

If
$$A_i = a$$
, then $Y_i = Y^a$
(consistency)

Good causal questions involve clarity about interference

Clarity about interference

You see an cool advertisement for some the new upside down whoppers and the next day you buy it for lunch.

 $Y_{You} = Purchase$

Maybe, if you had not see the advertisement, you would not have bought the product.

$$Y_{You}^{No ad} = No Purchase$$

Your friend who *has not* seen the ad, but sees you enjoying your meal, so they get it for lunch the next day.

What are your friend's potential outcomes?

Potential Outcomes under Interference

Your friend's potential outcomes depend on their own treatment assignment as well as yours!

a _{you}	a _{friend}	$Y_{\sf friend}^{a_{\sf you},a_{\sf friend}}$
ad	ad	Purchase
no ad	no ad	No Purchase
ad	no ad	Purchase
no ad	ad	No Purchase

What is the problem if I write

 $Y_{\text{friend}}^{\text{ad}}$ or $Y_{\text{friend}}^{\text{no ad}}$?

- ► Your treatment "interfered" with their outcome
- In general, when an individual's outcome can depend on the treatment of others in the population, we call this *interference*

Activity: Interference

In what other applications might interference be something to think about?

Interference

In most general settings, everyone can affect everyone else's outcomes!

$$Y_i^{a_1,a_2,\cdots,a_n}$$

- ▶ 2ⁿ possible potential outcomes per person!
- Interference is present in many settings
- ► Not all settings have interference!
- Good causal questions account for interference when interference is present

Good causal questions involve treatments that exist

1. Treatments that exist (positivity)

Employer 1

100 employees

Face-to-face interaction

75% randomized to vaccine 25% randomized to no vaccine

Employer 2

200 employees

Work in individual offices

50% randomized to vaccine 50% randomized to no vaccine

How do you estimate the conditional average treatment effect (CATE)?

1. Treatments that exist (positivity)

Employer 1

100 employees

Face-to-face interaction

100% randomized to vaccine 0% randomized to no vaccine

Employer 2

200 employees

Work in individual offices

50% randomized to vaccine 50% randomized to no vaccine

How do you estimate the conditional average treatment effect (CATE)?

1. Treatments that exist

If units are exchangeable given a confounder L, then to estimate $E(Y^a)$ we need **positivity** to hold

$$\mathsf{P}(A = a \mid \vec{L} = \vec{\ell}) > 0$$
 for all $a, \vec{\ell}$

where $\vec{L} := (L_1, L_2, \cdots, L_m) \in \mathbb{R}^m$ is a vector of covariates.

Recall Inverse Probability Weighting:

$$\widehat{ATE}_{\mathsf{IPW}} = \frac{1}{N} \sum_{i:A_i=1} \frac{Y_i}{\pi_i^1} - \frac{1}{N} \sum_{i:A_i=0} \frac{Y_i}{\pi_i^0}$$

Some treatments simply do not exist in some populations.

Source: Wikimedia A, B, C

Would the bulbs in Ithaca bloom if it did not freeze all winter?

Confounder L	Ithaca
Treatment a	Did not freeze
Outcome Y^a	Blooms?

Some treatments simply do not exist in some populations.

Source: Wikimedia A, B, C

Would the bulbs in Ithaca bloom if it did not freeze all winter?

Confounder *L* Ithaca Treatment *a* Did not freeze Outcome *Y*^a Blooms?

Sarah has no MD training. Would Sarah earn more money if she were a surgeon?

Confounder L No MD training Treatment a Surgeon Outcome Y^a Earnings

1. Treatments that exist

We can choose causal questions so that positivity holds.

$$\mathsf{P}(A=a\mid \vec{L}=\vec{\ell})>0$$

- ▶ in each population subgroup $\vec{L} = \vec{\ell}$
- only study treatment values a that can actually happen

Good causal questions: In math

We should study treatments that exist

$$\mathsf{P}(\mathsf{A}=\mathsf{a}\midec{\mathsf{L}}=ec{\ell})>0$$

with potential outcomes that are well-defined (consistency)

 $Y = Y^a$ when A = a

Well-defined potential outcomes involve precise treatments $\mathsf{BA}^{\mathsf{Binghamton}} \quad \text{instead of} \quad \mathsf{BA}^{\mathsf{SUNY}}$ and incorporate interference when it exists

 $Y^{a_{you},a_{your friend}}$ instead of $Y^{a_{you}}$

(positivity)

Course Project: Overview

- Walk through an entire causal analysis: starting with defining a causal question all the way to communicating the results of your analysis
- Project split up into different tasks you'll complete throughout the semester, with feedback
- ► Some parts you will complete individually, some as a group
- We'll post details of all this on the website

Course Project: Task One

- Released today
- Due Thursday, October 3rd by 5pm
- Pick a causal question that is interesting to you and a dataset that you can use to study this question
- ▶ 25 point assignment
 - 10 points: well-defined and clear causal question + clear potential outcomes notation
 - 5 points for explaining how the fundamental problem of causal inference applies
 - 10 points for having a dataset that you can use to answer your question
- We will post detailed descriptions (including a more detailed rubric) of all this
- Descriptions will include pointers to possible datasets

Learning goals for today

At the end of class, you will be able to ask good causal questions.

Good causal questions

- ► involve precise treatments
- ▶ with clarity about interference
- involve treatments that exist

(consistency assumption) (consistency assumption) (positivity assumption)

After class:

- ► Hernán and Robins 2020 Chapter 3.3-3.6
- Optional: Does water kill? A call for less casual causal inferences. (Hernán, M. 2016)