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Learning goals for today

At the end of class, you will be able to:

1. Describe different ways to measure a causal effect

2. Estimate the average causal effect using data from a
conditionally randomized experiment using inverse probability
weighting

3. Explain why conditional exchangeability might be reasonable
in some observational data
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Logistics

▶ Ch 1.3 and 2.4 in Hernan and Robins 2023

▶ Problem Set 1 Peer Review due Sep 16

▶ Problem set 2 posted today, due on Sep 19
▶ Quiz 1 will be in class on Sep 18

▶ 10 minutes
▶ paper + pen/pencil
▶ Please email me for SDS accomodations
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Measures of association/causation2

▶ Average Causal Effect (Average treatment effect or Risk
Difference)

E(Y a=1)− E(Y a=0)

▶ Causal Risk Ratio1:
E(Y a=1)

E(Y a=0)

▶ Causal Odds Ratio (binary outcome and treatment):

E(Y a=1 = 1)/E(Y a=1 = 0)

E(Y a=0 = 1)/E(Y a=0 = 0)

▶ No average causal effect if CRR = COR = 1

1For binary outcomes, E(Y a=1 = 1) = Pr(Y a=1 = 1)
2Ch 1.2 and 1.3 of Hernan and Robins
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Measures of association/causation3

▶ All measures roughly agree if E(Y a=1) = E(Y a=0)

▶ When E(Y a=1) ̸= E(Y a=0), the different measures may be
easier/harder to interpret

▶ From Pfizer Covid-19 Vaccine
▶ Of the individuals who were given the vaccine (Ai = 1), 0.04%

had a positive Covid test (Yi = 1)
▶ Of the individuals who were given the placebo (Ai = 0), 0.9%

had a positive Covid test (Yi = 1)
▶ Under consistency and exchangeability, what is the ACE and

CRR?
▶ When trying to advocate for the vaccine, which measure would

you use?
▶ When trying to advocate against the vaccine, which measure

would you use?

3Ch 1.2 and 1.3 of Hernan and Robins
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Measures of association/causation4

▶ Way causal quantities are communicated can make a
difference

▶ Statistical significance (or non-zero causal effect) does not
necessarily imply clinical/practical relevance

▶ When using using causal inference to make decisions, must
place in broader context

4Ch 1.2 and 1.3 of Hernan and Robins
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Inverse probability weighting

▶ Standardization: constructs an estimate of E(Y a) through a
weighted average

▶ Inverse probability weighted (IPW) estimator is equivalent to
standardization

▶ Estimator for the ATE

E(Y a) =
1

N

∑
i :Ai=a

Yi

πi

▶ πi = P(A = ai | L = ℓi ) is the probability of the observed
treatment conditioning on confounders

▶ N is the total number of observations (over all treatment
groups and confounder groups
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Inverse probability weighting: Conditional randomizaton

L = 0 L = 1• Untreated

• Treated

•
••

•
• •

•
•

Hypothetical world where no-one is treated
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Inverse probability weighting: Mathematical proof5

E

(
I(A = a)

P(A = a | L⃗)
Y

)
(1)

= E

(
I(A = a)

P(A = a | L⃗)
Y a

)
consistency (2)

= E

(
E

[
I(A = a)

P(A = a | L⃗)
Y a | L⃗

])
iterated expectation (3)

= E

(
E

[
I(A = a)

P(A = a | L⃗)
| L⃗

]
E
[
Y a | L⃗

])
exchangeability (4)

= E
(
E
[
Y a | L⃗

])
since left term was 1 (5)

= E(Y a)

iterated expectation

(6)

5Hernán & Robins Technical Point 2.3
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Excercise

E(Y a) = 1
N

∑
i :Ai=a Yi/πi πi = Pr(Ai = a | L = ℓi )

Name L A Y
Rheia 0 0 0
Kronos 0 0 1
Demeter 0 0 0
Hades 0 0 0
Hestia 0 1 0
Poseidon 0 1 0
Hera 0 1 0
Zeus 0 1 1

Name L A Y
Artemis 1 0 1
Apollo 1 0 1
Leto 1 0 0
Ares 1 1 1
Athena 1 1 1
Hephaestus 1 1 1
Aphrodite 1 1 1
Polyphemus 1 1 1
Persephone 1 1 1
Hermes 1 1 0
Hebe 1 1 0
Dionysus 1 1 0
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Conditional exchangeability in observational data

▶ When conditional exchangeability holds, we can estimate
causal effects from the observed data

▶ Use either standardization or inverse probability weighting

▶ By design, conditional exchangeability holds in conditionally
randomized experiments

▶ Marginal exchangeability is very unlikely in observational data

▶ Conditional exchangeability is may be more reasonable in
observational data
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Excercise

Suppose we have data gathered by surveying individuals in Fall of
2021

▶ Whether the individual was vaccinated for Covid
Ai = 1 if vaccinated, Ai = 0 if not vaccinated

▶ Whether the individual tested positive for Covid in 2021
Yi = 1 if positive test, Yi = 0 if no positive test

▶ What additional information could you gather about each
individual to make conditional exchangeability might be
plausible?

Y a=1,Y a=0 ⊥⊥ A | L
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Conditional exchangeability in observational data

▶ Even if gathering data was possible for every covariate we
want, when do we stop?

▶ Never 100% sure that conditional exchangeability holds

▶ Is it reasonable?

▶ In observational data, conditional exchangeability is an
assumption we make (but can’t typically verify)

▶ Requires expert knowledge

▶ Causal claims are data + outside knowledge
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