Inverse Probability Weighting

INFO/STSCI/ILRST 3900: Causal Inference

11 Sep 2025

Learning goals for today

At the end of class, you will be able to:

- 1. Describe different ways to measure a causal effect
- Estimate the average causal effect using data from a conditionally randomized experiment using inverse probability weighting
- Explain why conditional exchangeability might be reasonable in some observational data

Logistics

- ► Ch 1.3 and 2.4 in Hernan and Robins 2023
- ► Problem Set 1 Peer Review due Sep 16
- ► Problem set 2 posted today, due on Sep 19
- ► Quiz 1 will be in class on Sep 18
 - ▶ 10 minutes
 - ▶ paper + pen/pencil
 - ► Please email me for SDS accomodations

Measures of association/causation²

 Average Causal Effect (Average treatment effect or Risk Difference)

$$\mathsf{E}(Y^{a=1}) - \mathsf{E}(Y^{a=0})$$

¹For binary outcomes, $E(Y^{a=1}=1)=Pr(Y^{a=1}=1)$

 $^{^{2}\}mathrm{Ch}\ 1.2\ \mathrm{and}\ 1.3\ \mathrm{of}\ \mathrm{Hernan}\ \mathrm{and}\ \mathrm{Robins}$

Measures of association/causation²

► Average Causal Effect (Average treatment effect or Risk Difference)

$$\mathsf{E}(Y^{a=1}) - \mathsf{E}(Y^{a=0})$$

► Causal Risk Ratio¹:

$$\frac{\mathsf{E}(Y^{a=1})}{\mathsf{E}(Y^{a=0})}$$

► Causal Odds Ratio (binary outcome and treatment):

$$\frac{\mathsf{E}(Y^{a=1}=1)/\mathsf{E}(Y^{a=1}=0)}{\mathsf{E}(Y^{a=0}=1)/\mathsf{E}(Y^{a=0}=0)}$$

 $^{^{1}}$ For binary outcomes, $\mathsf{E}(\mathit{Y}^{\mathit{a}=1}=1)=\mathit{Pr}(\mathit{Y}^{\mathit{a}=1}=1)$

²Ch 1.2 and 1.3 of Hernan and Robins

Measures of association/causation²

► Average Causal Effect (Average treatment effect or Risk Difference)

$$\mathsf{E}(Y^{a=1}) - \mathsf{E}(Y^{a=0})$$

► Causal Risk Ratio¹:

$$\frac{\mathsf{E}(Y^{a=1})}{\mathsf{E}(Y^{a=0})}$$

► Causal Odds Ratio (binary outcome and treatment):

$$\frac{\mathsf{E}(Y^{a=1}=1)/\mathsf{E}(Y^{a=1}=0)}{\mathsf{E}(Y^{a=0}=1)/\mathsf{E}(Y^{a=0}=0)}$$

 \blacktriangleright No average causal effect if CRR = COR = 1

¹For binary outcomes, $E(Y^{a=1}=1)=Pr(Y^{a=1}=1)$

²Ch 1.2 and 1.3 of Hernan and Robins

Measures of association/causation³

- ▶ All measures roughly agree if $E(Y^{a=1}) = E(Y^{a=0})$
- ▶ When $E(Y^{a=1}) \neq E(Y^{a=0})$, the different measures may be easier/harder to interpret
- ► From Pfizer Covid-19 Vaccine
 - ▶ Of the individuals who were given the vaccine $(A_i = 1)$, 0.04% had a positive Covid test $(Y_i = 1)$
 - ▶ Of the individuals who were given the placebo $(A_i = 0)$, 0.9% had a positive Covid test $(Y_i = 1)$
 - Under consistency and exchangeability, what is the ACE and CRR?
 - ► When trying to advocate for the vaccine, which measure would you use?
 - ► When trying to advocate against the vaccine, which measure would you use?

³Ch 1.2 and 1.3 of Hernan and Robins

Measures of association/causation⁴

- Way causal quantities are communicated can make a difference
- Statistical significance (or non-zero causal effect) does not necessarily imply clinical/practical relevance
- ► When using using causal inference to make decisions, must place in broader context

⁴Ch 1.2 and 1.3 of Hernan and Robins

Inverse probability weighting

- Standardization: constructs an estimate of E(Y^a) through a weighted average
- ► Inverse probability weighted (IPW) estimator is equivalent to standardization
- ► Estimator for the ATE

$$\mathsf{E}(Y^a) = \frac{1}{N} \sum_{i:A_i = a} \frac{Y_i}{\pi_i}$$

- ▶ $\pi_i = P(A = a_i \mid L = \ell_i)$ is the probability of the observed treatment conditioning on confounders
- ► *N* is the total number of observations (over all treatment groups and confounder groups

- Untreated
- Treated

Hypothetical world where no-one is treated

- Untreated
- Treated

- Untreated
- Treated

- Untreated
- Treated

- Untreated
- Treated

- Untreated
- Treated

$$\pi_i = P(A_i = a \mid L_i) = \begin{cases} \frac{1}{4} & \text{if } a = 1\\ \frac{3}{4} & \text{if } a = 0 \end{cases}$$

- Untreated
- Treated

$$\pi_i = P(A_i = a \mid L_i) = \begin{cases} \frac{1}{4} & \text{if } a = 1\\ \frac{3}{4} & \text{if } a = 0 \end{cases}$$

$$\frac{3}{4}$$
 if $a = 1$
 $\frac{1}{4}$ if $a = 0$

Untreated

Treated

L = 0

$$\pi_i = P(A_i = a \mid L_i) = \begin{cases} \frac{1}{4} & \text{if } a = 1\\ \frac{3}{4} & \text{if } a = 0 \end{cases}$$

Each counts for:

- Untreated
- Treated

$$\pi_i = P(A_i = a \mid L_i) = \begin{cases} \frac{1}{4} & \text{if } a = 1\\ \frac{3}{4} & \text{if } a = 0 \end{cases}$$

Each counts for:

$$\begin{cases} \frac{4}{1} & \text{if } a = 1\\ \frac{4}{3} & \text{if } a = 0 \end{cases}$$

$$\begin{cases} \frac{3}{4} & \text{if } a = 1\\ \frac{1}{4} & \text{if } a = 0 \end{cases}$$

Untreated

Treated

L=0

$$\pi_i = P(A_i = a \mid L_i) = \begin{cases} \frac{1}{4} & \text{if } a = 1\\ \frac{3}{4} & \text{if } a = 0 \end{cases}$$

Each counts for:

$$\begin{cases} \frac{4}{1} & \text{if } a = 1 \\ \frac{4}{3} & \text{if } a = 0 \end{cases}$$

$$\begin{cases} \frac{4}{3} & \text{if } a = 0 \\ \frac{4}{3} & \text{if } a = 1 \\ \frac{4}{1} & \text{if } a = 0 \end{cases}$$

⁵Hernán & Robins Technical Point 2.3

$$\mathsf{E}\left(\frac{\mathbb{I}(A=a)}{\mathsf{P}(A=a\mid\vec{L})}Y\right)$$

 $= E(Y^a)$

(1)

(6)

$$E\left(\frac{\mathbb{I}(A=a)}{P(A=a\mid\vec{L})}Y\right)$$

$$=E\left(\frac{\mathbb{I}(A=a)}{P(A=a\mid\vec{L})}Y^{a}\right)$$
consistency (2)

$$= \mathsf{E}(Y^a) \tag{6}$$

⁵Hernán & Robins Technical Point 2.3

$$E\left(\frac{\mathbb{I}(A=a)}{P(A=a\mid\vec{L})}Y\right)$$

$$= E\left(\frac{\mathbb{I}(A=a)}{P(A=a\mid\vec{L})}Y^{a}\right)$$
consistency (2)
$$= E\left(E\left[\frac{\mathbb{I}(A=a)}{P(A=a\mid\vec{L})}Y^{a}\mid\vec{L}\right]\right)$$
iterated expectation (3)

$$= \mathsf{E}(Y^a) \tag{6}$$

⁵Hernán & Robins Technical Point 2.3

$$E\left(\frac{\mathbb{I}(A=a)}{P(A=a\mid\vec{L})}Y\right) \tag{1}$$

$$= E\left(\frac{\mathbb{I}(A=a)}{P(A=a\mid\vec{L})}Y^{a}\right) \qquad \text{consistency} \tag{2}$$

$$= E\left(E\left[\frac{\mathbb{I}(A=a)}{P(A=a\mid\vec{L})}Y^{a}\mid\vec{L}\right]\right) \qquad \text{iterated expectation} \tag{3}$$

$$= E\left(E\left[\frac{\mathbb{I}(A=a)}{P(A=a\mid\vec{L})}\mid\vec{L}\right]E\left[Y^{a}\mid\vec{L}\right]\right) \qquad \text{exchangeability} \tag{4}$$

$$= \mathsf{E}(Y^a) \tag{6}$$

⁵Hernán & Robins Technical Point 2.3

$$E\left(\frac{\mathbb{I}(A=a)}{P(A=a\mid\vec{L})}Y\right) \tag{1}$$

$$= E\left(\frac{\mathbb{I}(A=a)}{P(A=a\mid\vec{L})}Y^a\right) \qquad \text{consistency} \qquad (2)$$

$$= E\left(E\left[\frac{\mathbb{I}(A=a)}{P(A=a\mid\vec{L})}Y^a\mid\vec{L}\right]\right) \qquad \text{iterated expectation} \qquad (3)$$

$$= E\left(E\left[\frac{\mathbb{I}(A=a)}{P(A=a\mid\vec{L})}\mid\vec{L}\right]E\left[Y^a\mid\vec{L}\right]\right) \qquad \text{exchangeability} \qquad (4)$$

$$= E\left(E\left[Y^a\mid\vec{L}\right]\right) \qquad \text{since left term was 1} \qquad (5)$$

$$= E(Y^a) \qquad \qquad (6)$$

⁵Hernán & Robins Technical Point 2.3

$$E\left(\frac{\mathbb{I}(A=a)}{P(A=a\mid\vec{L})}Y\right) \tag{1}$$

$$= E\left(\frac{\mathbb{I}(A=a)}{P(A=a\mid\vec{L})}Y^a\right) \qquad \text{consistency} \qquad (2)$$

$$= E\left(E\left[\frac{\mathbb{I}(A=a)}{P(A=a\mid\vec{L})}Y^a\mid\vec{L}\right]\right) \qquad \text{iterated expectation} \qquad (3)$$

$$= E\left(E\left[\frac{\mathbb{I}(A=a)}{P(A=a\mid\vec{L})}\mid\vec{L}\right]E\left[Y^a\mid\vec{L}\right]\right) \qquad \text{exchangeability} \qquad (4)$$

$$= E\left(E\left[Y^a\mid\vec{L}\right]\right) \qquad \text{since left term was 1} \qquad (5)$$

$$= E(Y^a) \qquad \text{iterated expectation} \qquad (6)$$

⁵Hernán & Robins Technical Point 2.3

Excercise

$$\mathsf{E}(Y^a) = \frac{1}{N} \sum_{i:A_i=a} Y_i/\pi_i \qquad \pi_i = \mathsf{Pr}(A_i=a \mid L=\ell_i)$$

Name	L	Α	Υ
Rheia	0	0	0
Kronos	0	0	1
Demeter	0	0	0
Hades	0	0	0
Hestia	0	1	0
Poseidon	0	1	0
Hera	0	1	0
Zeus	0	1	1

Name	L	Α	Υ
Artemis	1	0	1
Apollo	1	0	1
Leto	1	0	0
Ares	1	1	1
Athena	1	1	1
Hephaestus	1	1	1
Aphrodite	1	1	1
Polyphemus	1	1	1
Persephone	1	1	1
Hermes	1	1	0
Hebe	1	1	0
Dionysus	1	1	0

Excercise

$$\mathsf{E}(Y^{\mathsf{a}}) = \frac{1}{N} \sum_{i:A_i = \mathsf{a}} Y_i / \pi_i \qquad \pi_i = \mathsf{Pr}(A = \mathsf{a}_i \mid L = \ell_i)$$

Name	L	Α	Υ
Rheia	0	0	0
Kronos	0	0	1
Demeter	0	0	0
Hades	0	0	0
Hestia	0	1	0
Poseidon	0	1	0
Hera	0	1	0
Zeus	0	1	1

Name	L	Α	Υ
Artemis	1	0	1
Apollo	1	0	1
Leto	1	0	0
Ares	1	1	1
Athena	1	1	1
Hephaestus	1	1	1
Aphrodite	1	1	1
Polyphemus	1	1	1
Persephone	1	1	1
Hermes	1	1	0
Hebe	1	1	0
Dionysus	1	1	0

- ► When conditional exchangeability holds, we can estimate causal effects from the observed data
- Use either standardization or inverse probability weighting
- By design, conditional exchangeability holds in conditionally randomized experiments
- Marginal exchangeability is very unlikely in observational data
- Conditional exchangeability is may be more reasonable in observational data

Excercise

Suppose we have data gathered by surveying individuals in Fall of 2021

- ▶ Whether the individual was vaccinated for Covid $A_i = 1$ if vaccinated, $A_i = 0$ if not vaccinated
- Whether the individual tested positive for Covid in 2021 $Y_i = 1$ if positive test, $Y_i = 0$ if no positive test
- What additional information could you gather about each individual to make conditional exchangeability might be plausible?

$$Y^{a=1}, Y^{a=0} \perp A \mid L$$

► Even if gathering data was possible for every covariate we want, when do we stop?

- ► Even if gathering data was possible for every covariate we want, when do we stop?
- ▶ Never 100% sure that conditional exchangeability holds
- ► Is it reasonable?

- ► Even if gathering data was possible for every covariate we want, when do we stop?
- ▶ Never 100% sure that conditional exchangeability holds
- ► Is it reasonable?
- ► In observational data, conditional exchangeability is an assumption we make (but can't typically verify)
- Requires expert knowledge

- ► Even if gathering data was possible for every covariate we want, when do we stop?
- ▶ Never 100% sure that conditional exchangeability holds
- ► Is it reasonable?
- ► In observational data, conditional exchangeability is an assumption we make (but can't typically verify)
- ► Requires expert knowledge
- ► Causal claims are data + outside knowledge

Learning goals for today

At the end of class, you will be able to:

- 1. Describe different ways to measure a causal effect
- Estimate the average causal effect using data from a conditionally randomized experiment using inverse probability weighting
- Explain why conditional exchangeability might be reasonable in some observational data