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Learning goals for today

At the end of class, you will be able to:

1. Estimate the average causal effect using data from a
conditionally randomized experiment using inverse probability
weighting

2. Explain why conditional exchangeability might be reasonable
in some observational data
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Logistics

▶ Ch 2.4 and 3.2 in Hernan and Robins 2023

▶ Problem set 2 posted today, due on Sep 14
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Conditional randomization

▶ Marginal exchangeability: Y a ⊥⊥ A for all a

▶ Conditional exchangeability: Y a ⊥⊥ A | L for all a
The potential outcomes are independent of treatment
conditional on L

▶ Stratification: We can directly estimate causal effect within
each sub-population (or stratum)

▶ We can estimate the ACE using standardization
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Excercise

L A Y
1 Rheia 0 0 0
2 Kronos 0 0 1
3 Demeter 0 0 0
4 Hades 0 0 0
5 Hestia 0 1 0
6 Poseidon 0 1 0
7 Hera 0 1 0
8 Zeus 0 1 1

L A Y
9 Artemis 1 0 1

10 Apollo 1 0 1
11 Leto 1 0 0
12 Ares 1 1 1
13 Athena 1 1 1
14 Hephaestus 1 1 1
15 Aphrodite 1 1 1
16 Polyphemus 1 1 1
17 Persephone 1 1 1
18 Hermes 1 1 0
19 Hebe 1 1 0
20 Dionysus 1 1 0

E(Y a=1) = Pr(L = 1)E(Y | L = 1,A = 1)

+ Pr(L = 0)E(Y | L = 0,A = 1)
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Inverse probability weighting

▶ Standardization: constructs an estimate of E(Y a) through a
weighted average

▶ Inverse probability weighted (IPW) estimator is equivalent to
standardization

▶ Estimator for the ATE

E(Y a) =
1

N

∑
i :Ai=a

Yi

πi

▶ πi = P(A = ai | L = ℓi ) is the probability of the observed
treatment conditioning on confounders

▶ N is the total number of observations (over all treatment
groups and confounder groups
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Inverse probability weighting: Conditional randomizaton

L = 0 L = 1• Untreated

• Treated

•
••

•
• •

•
•

Hypothetical world where no-one is treated
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Inverse probability weighting: Mathematical proof1

E

(
I(A = a)

P(A = a | L⃗)
Y

)
(1)

= E

(
I(A = a)

P(A = a | L⃗)
Y a

)
consistency (2)

= E

(
E

[
I(A = a)

P(A = a | L⃗)
Y a | L⃗

])
iterated expectation (3)

= E

(
E

[
I(A = a)

P(A = a | L⃗)
| L⃗

]
E
[
Y a | L⃗

])
exchangeability (4)

= E
(
E
[
Y a | L⃗

])
since left term was 1 (5)

= E(Y a)

iterated expectation

(6)

1Hernán & Robins Technical Point 2.3
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Excercise

E(Y a) = 1
N

∑
i :Ai=a Yi/πi πi = Pr(Ai = a | L = ℓi )
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Conditional exchangeability in observational data

▶ When conditional exchangeability holds, we can estimate
causal effects from the observed data

▶ Use either standardization or inverse probability weighting

▶ By design, conditional exchangeability holds in conditionally
randomized experiments

▶ Marginal exchangeability is very unlikely in observational data

▶ Conditional exchangeability is may be more reasonable in
observational data
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Excercise

Suppose we have data gathered by surveying individuals in Fall of
2021

▶ Whether the individual was vaccinated for Covid
Ai = 1 if vaccinated, Ai = 0 if not vaccinated

▶ Whether the individual tested positive for Covid in 2021
Yi = 1 if positive test, Yi = 0 if no positive test

▶ What additional information could you gather about each
individual to make conditional exchangeability might be
plausible?

Y a=1,Y a=0 ⊥⊥ A | L
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Conditional exchangeability in observational data

▶ Even if gathering data was possible for every covariate we
want, when do we stop?

▶ Never 100% sure that conditional exchangeability holds

▶ Is it reasonable?

▶ In observational data, conditional exchangeability is an
assumption we make (but can’t typically verify)

▶ Requires expert knowledge

▶ Causal claims are data + outside knowledge
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