Inverse Probability Weighting

INFO/STSCI/ILRST 3900: Causal Inference

7 Sep 2023

At the end of class, you will be able to:

- 1. Estimate the average causal effect using data from a conditionally randomized experiment using inverse probability weighting
- 2. Explain why conditional exchangeability might be reasonable in some observational data

Logistics

- ► Ch 2.4 and 3.2 in Hernan and Robins 2023
- Problem set 2 posted today, due on Sep 14

Conditional randomization

- Marginal exchangeability: $Y^a \perp A$ for all a
- ► Conditional exchangeability: Y^a ⊥ A | L for all a The potential outcomes are independent of treatment conditional on L
- Stratification: We can directly estimate causal effect within each sub-population (or stratum)
- We can estimate the ACE using standardization

		L	Α	Y
1	Rheia	0	0	0
2	Kronos	0	0	1
3	Demeter	0	0	0
4	Hades	0	0	0
5	Hestia	0	1	0
6	Poseidon	0	1	0
7	Hera	0	1	0
8	Zeus	0	1	1

		L	А	Y
9	Artemis	1	0	1
10	Apollo	1	0	1
11	Leto	1	0	0
12	Ares	1	1	1
13	Athena	1	1	1
14	Hephaestus	1	1	1
15	Aphrodite	1	1	1
16	Polyphemus	1	1	1
17	Persephone	1	1	1
18	Hermes	1	1	0
19	Hebe	1	1	0
20	Dionysus	1	1	0

$$E(Y^{a=1}) = Pr(L=1)E(Y | L=1, A=1)$$

+ Pr(L = 0)E(Y | L = 0, A = 1)

		L	Α	Y
1	Rheia	0	0	0
2	Kronos	0	0	1
3	Demeter	0	0	0
4	Hades	0	0	0
5	Hestia	0	1	0
6	Poseidon	0	1	0
7	Hera	0	1	0
8	Zeus	0	1	1

		L	А	Υ
9	Artemis	1	0	1
10	Apollo	1	0	1
11	Leto	1	0	0
12	Ares	1	1	1
13	Athena	1	1	1
14	Hephaestus	1	1	1
15	Aphrodite	1	1	1
16	Polyphemus	1	1	1
17	Persephone	1	1	1
18	Hermes	1	1	0
19	Hebe	1	1	0
20	Dionysus	1	1	0

$$\mathsf{E}(Y^{a=1}) = \underbrace{\Pr(L=1)}_{12/20} \underbrace{\mathsf{E}(Y \mid L=1, A=1)}_{6/9}$$

+ Pr(L = 0) E(Y | L = 0, A = 1)

		L	Α	Y
1	Rheia	0	0	0
2	Kronos	0	0	1
3	Demeter	0	0	0
4	Hades	0	0	0
5	Hestia	0	1	0
6	Poseidon	0	1	0
7	Hera	0	1	0
8	Zeus	0	1	1

		L	А	Υ
9	Artemis	1	0	1
10	Apollo	1	0	1
11	Leto	1	0	0
12	Ares	1	1	1
13	Athena	1	1	1
14	Hephaestus	1	1	1
15	Aphrodite	1	1	1
16	Polyphemus	1	1	1
17	Persephone	1	1	1
18	Hermes	1	1	0
19	Hebe	1	1	0
20	Dionysus	1	1	0

$$\mathsf{E}(Y^{a=1}) = \underbrace{\Pr(L=1)}_{12/20} \underbrace{\mathsf{E}(Y \mid L=1, A=1)}_{6/9}$$

+
$$\underbrace{Pr(L=0)}_{8/20} \underbrace{E(Y \mid L=0, A=1)}_{1/4} = 1/2$$

5/17

		L	Α	Y
1	Rheia	0	0	0
2	Kronos	0	0	1
3	Demeter	0	0	0
4	Hades	0	0	0
5	Hestia	0	1	0
6	Poseidon	0	1	0
7	Hera	0	1	0
8	Zeus	0	1	1

		L	А	Y
9	Artemis	1	0	1
10	Apollo	1	0	1
11	Leto	1	0	0
12	Ares	1	1	1
13	Athena	1	1	1
14	Hephaestus	1	1	1
15	Aphrodite	1	1	1
16	Polyphemus	1	1	1
17	Persephone	1	1	1
18	Hermes	1	1	0
19	Hebe	1	1	0
20	Dionysus	1	1	0

$$\mathsf{E}(Y^{a=0}) = \underbrace{\Pr(L=1)}_{12/20} \underbrace{\mathsf{E}(Y \mid L=1, A=0)}_{2/3}$$

+
$$\underbrace{Pr(L=0)}_{8/20} \underbrace{E(Y \mid L=0, A=0)}_{1/4}$$

4 □ ▶6 / 17

		L	Α	Y
1	Rheia	0	0	0
2	Kronos	0	0	1
3	Demeter	0	0	0
4	Hades	0	0	0
5	Hestia	0	1	0
6	Poseidon	0	1	0
7	Hera	0	1	0
8	Zeus	0	1	1

		1	Α	V
		L		ſ
9	Artemis	1	0	1
10	Apollo	1	0	1
11	Leto	1	0	0
12	Ares	1	1	1
13	Athena	1	1	1
14	Hephaestus	1	1	1
15	Aphrodite	1	1	1
16	Polyphemus	1	1	1
17	Persephone	1	1	1
18	Hermes	1	1	0
19	Hebe	1	1	0
20	Dionysus	1	1	0

$$\mathsf{E}(Y^{a=0}) = \underbrace{\Pr(L=1)}_{12/20} \underbrace{\mathsf{E}(Y \mid L=1, A=0)}_{2/3}$$

$$+\underbrace{\Pr(L=0)}_{8/20}\underbrace{\mathbb{E}(Y \mid L=0, A=0)}_{1/4} = 1/2$$

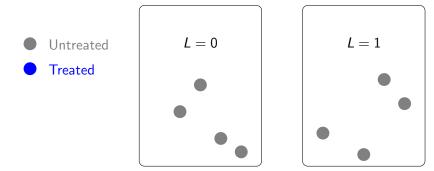
6 / 17

Inverse probability weighting

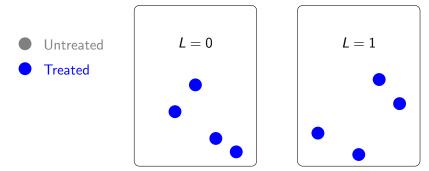
- Standardization: constructs an estimate of E(Y^a) through a weighted average
- Inverse probability weighted (IPW) estimator is equivalent to standardization
- Estimator for the ATE

$$\mathsf{E}(Y^a) = \frac{1}{N} \sum_{i:A_i=a} \frac{Y_i}{\pi_i}$$

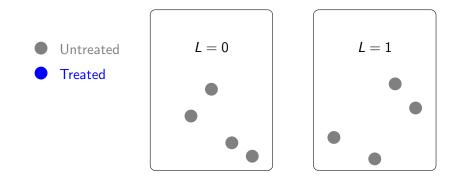
- $\pi_i = P(A = a_i | L = \ell_i)$ is the probability of the observed treatment conditioning on confounders
- ► *N* is the total number of observations (over all treatment groups and confounder groups

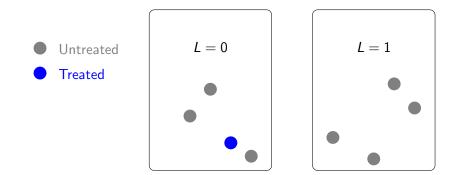


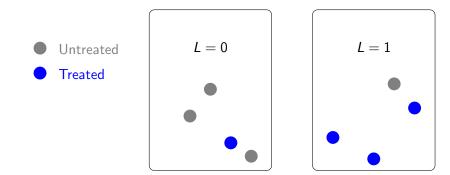
Hypothetical world where no-one is treated

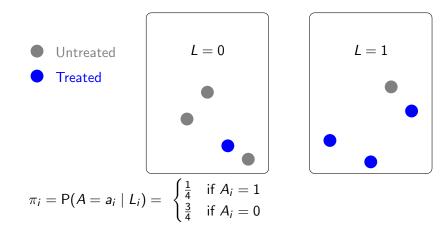


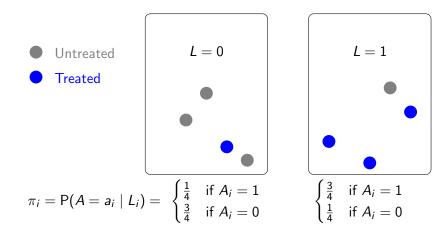
Hypothetical world where everyone is treated



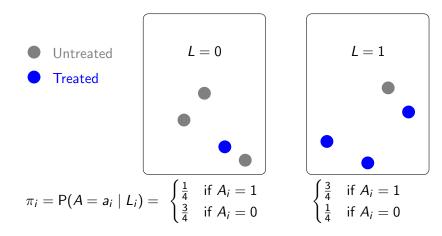




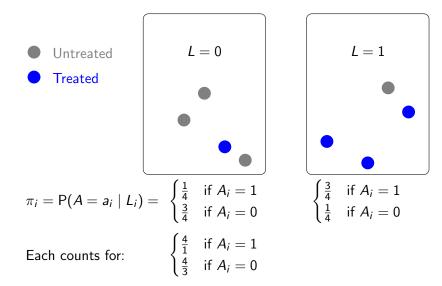


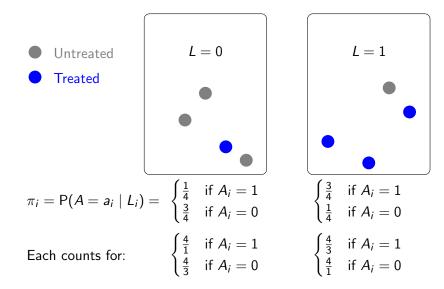


∢ □) 10/17



Each counts for:





□ ▶
 10 / 17

¹Hernán & Robins Technical Point 2.3

$$\mathsf{E}\left(\frac{\mathbb{I}(A=a)}{\mathsf{P}(A=a\mid \vec{L})}Y\right)$$

(1)

$$= \mathsf{E}(Y^a)$$

(6)

¹Hernán & Robins Technical Point 2.3

$$E\left(\frac{\mathbb{I}(A=a)}{\mathsf{P}(A=a\mid\vec{L})}Y\right)$$
$$= E\left(\frac{\mathbb{I}(A=a)}{\mathsf{P}(A=a\mid\vec{L})}Y^{a}\right)$$

(1)

$$= \mathsf{E}(Y^a)$$

(6)

¹Hernán & Robins Technical Point 2.3

□ ▶11 / 17

$$E\left(\frac{\mathbb{I}(A=a)}{\mathsf{P}(A=a\mid\vec{L})}Y\right)$$
$$= E\left(\frac{\mathbb{I}(A=a)}{\mathsf{P}(A=a\mid\vec{L})}Y^{a}\right)$$
$$= E\left(E\left[\frac{\mathbb{I}(A=a)}{\mathsf{P}(A=a\mid\vec{L})}Y^{a}\mid\vec{L}\right]\right)$$

(1)

iterated expectation (3)

$$= \mathsf{E}(Y^a)$$

(6)

$$E\left(\frac{\mathbb{I}(A=a)}{\mathsf{P}(A=a\mid\vec{L})}Y\right)$$
(1)

$$= E\left(\frac{\mathbb{I}(A=a)}{\mathsf{P}(A=a\mid\vec{L})}Y^{a}\right)$$
consistency (2)

$$= E\left(E\left[\frac{\mathbb{I}(A=a)}{\mathsf{P}(A=a\mid\vec{L})}Y^{a}\mid\vec{L}\right]\right)$$
iterated expectation (3)

$$= E\left(E\left[\frac{\mathbb{I}(A=a)}{\mathsf{P}(A=a\mid\vec{L})}\mid\vec{L}\right]E\left[Y^{a}\mid\vec{L}\right]\right)$$
exchangeability (4)

$$= E(Y^{a})$$
(6)

$$E\left(\frac{\mathbb{I}(A=a)}{\mathsf{P}(A=a\mid\vec{L})}Y\right)$$
(1)

$$= E\left(\frac{\mathbb{I}(A=a)}{\mathsf{P}(A=a\mid\vec{L})}Y^{a}\right)$$
consistency (2)

$$= E\left(E\left[\frac{\mathbb{I}(A=a)}{\mathsf{P}(A=a\mid\vec{L})}Y^{a}\mid\vec{L}\right]\right)$$
iterated expectation (3)

$$= E\left(E\left[\frac{\mathbb{I}(A=a)}{\mathsf{P}(A=a\mid\vec{L})}\mid\vec{L}\right]E\left[Y^{a}\mid\vec{L}\right]\right)$$
exchangeability (4)

$$= E\left(E\left[Y^{a}\mid\vec{L}\right]\right)$$
since left term was 1 (5)

$$= E(Y^{a})$$
(6)

$$E\left(\frac{\mathbb{I}(A=a)}{P(A=a\mid\vec{L})}Y\right)$$
(1)

$$= E\left(\frac{\mathbb{I}(A=a)}{P(A=a\mid\vec{L})}Y^{a}\right)$$
consistency (2)

$$= E\left(E\left[\frac{\mathbb{I}(A=a)}{P(A=a\mid\vec{L})}Y^{a}\mid\vec{L}\right]\right)$$
iterated expectation (3)

$$= E\left(E\left[\frac{\mathbb{I}(A=a)}{P(A=a\mid\vec{L})}\mid\vec{L}\right]E\left[Y^{a}\mid\vec{L}\right]\right)$$
exchangeability (4)

$$= E\left(E\left[Y^{a}\mid\vec{L}\right]\right)$$
since left term was 1 (5)

$$= E(Y^{a})$$
iterated expectation (6)

$$\mathsf{E}(Y^{a}) = \frac{1}{N} \sum_{i:A_{i}=a} Y_{i}/\pi_{i} \qquad \pi_{i} = \mathsf{Pr}(A_{i} = a \mid L = \ell_{i})$$

Name	L	А	Y
Rheia	0	0	0
Kronos	0	0	1
Demeter	0	0	0
Hades	0	0	0
Hestia	0	1	0
Poseidon	0	1	0
Hera	0	1	0
Zeus	0	1	1

Name	L	Α	Y
Artemis	1	0	1
Apollo	1	0	1
Leto	1	0	0
Ares	1	1	1
Athena	1	1	1
Hephaestus	1	1	1
Aphrodite	1	1	1
Polyphemus	1	1	1
Persephone	1	1	1
Hermes	1	1	0
Hebe	1	1	0
Dionysus	1	1	0

$$\mathsf{E}(Y^{a}) = \frac{1}{N} \sum_{i:A_{i}=a} Y_{i}/\pi_{i} \qquad \pi_{i} = \mathsf{Pr}(A = a_{i} \mid L = \ell_{i})$$

Name	L	А	Y
Rheia	0	0	0
Kronos	0	0	1
Demeter	0	0	0
Hades	0	0	0
Hestia	0	1	0
Poseidon	0	1	0
Hera	0	1	0
Zeus	0	1	1

Name	L	Α	Y
Artemis	1	0	1
Apollo	1	0	1
Leto	1	0	0
Ares	1	1	1
Athena	1	1	1
Hephaestus	1	1	1
Aphrodite	1	1	1
Polyphemus	1	1	1
Persephone	1	1	1
Hermes	1	1	0
Hebe	1	1	0
Dionysus	1	1	0

- When conditional exchangeability holds, we can estimate causal effects from the observed data
- Use either standardization or inverse probability weighting
- By design, conditional exchangeability holds in conditionally randomized experiments
- Marginal exchangeability is very unlikely in observational data
- Conditional exchangeability is may be more reasonable in observational data

Suppose we have data gathered by surveying individuals in Fall of 2021

- ▶ Whether the individual was vaccinated for Covid A_i = 1 if vaccinated, A_i = 0 if not vaccinated
- Whether the individual tested positive for Covid in 2021
 Y_i = 1 if positive test, Y_i = 0 if no positive test
- What additional information could you gather about each individual to make conditional exchangeability might be plausible?

$$Y^{a=1}, Y^{a=0} \perp A \mid L$$

Even if gathering data was possible for every covariate we want, when do we stop?

- Even if gathering data was possible for every covariate we want, when do we stop?
- ▶ Never 100% sure that conditional exchangeability holds
- ► Is it reasonable?

- Even if gathering data was possible for every covariate we want, when do we stop?
- ▶ Never 100% sure that conditional exchangeability holds
- ► Is it reasonable?
- In observational data, conditional exchangeability is an assumption we make (but can't typically verify)
- Requires expert knowledge

- Even if gathering data was possible for every covariate we want, when do we stop?
- ▶ Never 100% sure that conditional exchangeability holds
- ► Is it reasonable?
- In observational data, conditional exchangeability is an assumption we make (but can't typically verify)
- Requires expert knowledge
- Causal claims are data + outside knowledge

At the end of class, you will be able to:

- 1. Estimate the average causal effect using data from a conditionally randomized experiment using inverse probability weighting
- 2. Explain why conditional exchangeability might be reasonable in some observational data