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Learning goals for today

At the end of class, you will be able to:

1. Reason about treatment effect heterogeneity

2. Estimate the average causal effect using data from a
conditionally randomized experiment
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Logistics

▶ Ch 2.3 and 4.1-4.3 in Hernan and Robins

▶ Problem Set 1 due today at 11pm (turn in pdf on canvas)

▶ Peer reviews will be assigned, due Sep 16

3 / 18



Conditional randomization review

Exchangeability may not hold in every randomized experiment

▶ Age ≥ 55 receive vaccine with 2/3; more likely to get COVID
if treated

▶ Age < 55 get vaccine with probability 1/2; less likely to get
COVID if treated

▶ Exchangeability does not hold in entire population

▶ Exchangeability holds within each sub-population

▶ Two separate experiments; both are exchangeable
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Conditional randomization review

▶ Marginal exchangeability: Y a ⊥⊥ A for all a

▶ Conditional exchangeability: Y a ⊥⊥ A | L for all a
The potential outcomes are independent of treatment
conditional on L
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Conditional randomization

▶ Can be useful in designing experiments

▶ Most useful as an idealized experiment to target with
observational analysis

▶ Marginal exchangeability is very unlikely in observational data

▶ Conditional exchangeability may be more reasonable
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Conditional randomization

▶ Stratification: We can directly estimate causal effect within
each sub-population (or stratum)

E(Y | A = a, L = ℓ)
consis
= E(Y a | A = a, L = ℓ)

exchange
= E(Y a | L = ℓ)

▶ The causal effect within a stratum is the Conditional ACE

E(Y a=1 | L = ℓ)− E(Y a=0 | L = ℓ)

▶ If the treatment effect varies across sub-population, we say
there is treatment effect heterogeneity

E(Y a=1 | L = 55+)− E(Y a=0 | L = 55+)

̸=
E(Y a=1 | L =< 55)− E(Y a=0 | L =< 55)
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Measuring a causal effect

▶ Average Causal Effect E(Y a=1)− E(Y a=0)

▶ Some people could be harmed, some could be helped

▶ Suppose new policy results in .99 of individuals losing 1 dollar;
.01 gains 100 dollars

▶ Positive ACE, but maybe still not a good idea

▶ Conditional ACE helps give more information

▶ Sharp null hypothesis: Y a=1
i = Y a=0

i for all i

▶ Sharp null hypothesis also means ACE = 0, but not the other
way around!
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Standardization

▶ Under conditional exchangeability, we can directly estimate
the conditional average causal effect for each sub-population

▶ Conditional ACE (or ATE)

E(Y a=1 | L = ℓ)− E(Y a=0 | L = ℓ)

▶ When different treatments can be applied to different
individuals

▶ Ex: medicine, job training program

▶ ACE (or ATE)
E(Y a=1)− E(Y a=0)

▶ When everyone gets the same treatment

▶ Ex: Tax policy, new product feature

▶ Standardization allows us to estimate the ACE by combining
estimates from each sub-population
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Standardization

▶ Standardization allows us to estimate the ACE by combining
estimates from each sub-population

▶ Use law of total expectation
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Standardization

▶ Standardization allows us to estimate the ACE by combining
estimates from each sub-population

▶ For L = 0, 1

E(Y a) = Pr(L = 1)E(Y a | L = 1) + Pr(L = 0)E(Y a | L = 0)

= Pr(L = 1)E(Y | L = 1,A = a)

+ Pr(L = 0)E(Y | L = 0,A = a)

▶ More generally, for each a

E(Y a) =
∑
ℓ

Pr(L = ℓ)E(Y | L = ℓ,A = a)
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Exercise

L A Y
1 Rheia 0 0 0
2 Kronos 0 0 1
3 Demeter 0 0 0
4 Hades 0 0 0
5 Hestia 0 1 0
6 Poseidon 0 1 0
7 Hera 0 1 0
8 Zeus 0 1 1

L A Y
9 Artemis 1 0 1

10 Apollo 1 0 1
11 Leto 1 0 0
12 Ares 1 1 1
13 Athena 1 1 1
14 Hephaestus 1 1 1
15 Aphrodite 1 1 1
16 Polyphemus 1 1 1
17 Persephone 1 1 1
18 Hermes 1 1 0
19 Hebe 1 1 0
20 Dionysus 1 1 0

E(Y a) = Pr(L = 1)E(Y | L = 1,A = a)

+ Pr(L = 0)E(Y | L = 0,A = a)
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Generalization (transportability)

▶ Randomized control trials provide convincing evidence for a
causal effect

▶ Unless the sharp null is true, no such thing as “The” average
causal effect

▶ If treatment effect is heterogeneous, ACE is defined with
respect to a population of interest

▶ Ex: most psychology experiments consist primarily of
undergraduate students. Results may be accurate for
undergraduate students, but do not say much about broader
population

15 / 18



Generalization (transportability)

▶ Randomized control trials provide convincing evidence for a
causal effect

▶ Unless the sharp null is true, no such thing as “The” average
causal effect

▶ If treatment effect is heterogeneous, ACE is defined with
respect to a population of interest

▶ Ex: most psychology experiments consist primarily of
undergraduate students. Results may be accurate for
undergraduate students, but do not say much about broader
population

15 / 18



Generalization (transportability)

▶ Drawing representative sample for RCTs yields more reliable
conclusions

▶ Transporting effect to different population
▶ Assume conditional ACE is same across populations
▶ Standardization should use population weights in target

population
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Generalization (transportability)

▶ Consider experiment conducted on students in a psychology
course at Cornell

▶ Let L = 0 denote undergraduate and L = 1 denote graduate
student

▶ Suppose in the psychology course P(L = 0) = .95 and
P(L = 1) = .05

▶ In an anthropology course, P(L = 0) = .6 and P(L = 1) = .4
▶ Suppose

E(Y 1 − Y 0 | L = 0) = .2

E(Y 1 − Y 0 | L = 1) = −.4

▶ ACE for the experiment would be

.2× .95 + (−.4)× .05 = 0.17

▶ ACE in the anthropology course would be

.2× .6 + (−.4)× .4 = −0.04
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Learning goals for today

At the end of class, you will be able to:

1. Reason about treatment effect heterogeneity

2. Estimate the average causal effect using data from a
conditionally randomized experiment
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