Standardization and Generalization

INFO/STSCI/ILRST 3900: Causal Inference

9 Sep 2025

Learning goals for today

At the end of class, you will be able to:

- 1. Reason about treatment effect heterogeneity
- 2. Estimate the average causal effect using data from a conditionally randomized experiment

Logistics

- ► Ch 2.3 and 4.1-4.3 in Hernan and Robins
- ▶ Problem Set 1 due today at 11pm (turn in pdf on canvas)
- ► Peer reviews will be assigned, due Sep 16

Conditional randomization review

Exchangeability may not hold in every randomized experiment

- ▶ Age \geq 55 receive vaccine with 2/3; more likely to get COVID if treated
- ► Age < 55 get vaccine with probability 1/2; less likely to get COVID if treated

Conditional randomization review

Exchangeability may not hold in every randomized experiment

- Age ≥ 55 receive vaccine with 2/3; more likely to get COVID if treated
- ▶ Age < 55 get vaccine with probability 1/2; less likely to get COVID if treated
- Exchangeability does not hold in entire population
- ► Exchangeability holds within each sub-population
- ► Two separate experiments; both are exchangeable

Conditional randomization review

- ▶ Marginal exchangeability: $Y^a \perp A$ for all a
- ▶ Conditional exchangeability: $Y^a \perp \!\!\! \perp A \mid L$ for all a The potential outcomes are independent of treatment conditional on L

Conditional randomization

- ► Can be useful in designing experiments
- Most useful as an idealized experiment to target with observational analysis
- ► Marginal exchangeability is very unlikely in observational data
- Conditional exchangeability may be more reasonable

Conditional randomization

► **Stratification**: We can directly estimate causal effect within each sub-population (or stratum)

$$\mathsf{E}(Y \mid A = a, L = \ell) \stackrel{\mathsf{consis}}{=} \mathsf{E}(Y^a \mid A = a, L = \ell)$$

$$\stackrel{\mathsf{exchange}}{=} \mathsf{E}(Y^a \mid L = \ell)$$

► The causal effect within a stratum is the Conditional ACE

$$E(Y^{a=1} \mid L = \ell) - E(Y^{a=0} \mid L = \ell)$$

Conditional randomization

► **Stratification**: We can directly estimate causal effect within each sub-population (or stratum)

$$\mathsf{E}(Y \mid A = a, L = \ell) \stackrel{\mathsf{consis}}{=} \mathsf{E}(Y^a \mid A = a, L = \ell)$$

$$\stackrel{\mathsf{exchange}}{=} \mathsf{E}(Y^a \mid L = \ell)$$

▶ The causal effect within a stratum is the Conditional ACE

$$E(Y^{a=1} \mid L = \ell) - E(Y^{a=0} \mid L = \ell)$$

► If the treatment effect varies across sub-population, we say there is **treatment effect heterogeneity**

$$E(Y^{a=1} \mid L = 55+) - E(Y^{a=0} \mid L = 55+)$$

$$\neq$$

$$E(Y^{a=1} \mid L = < 55) - E(Y^{a=0} \mid L = < 55)$$

Measuring a causal effect

► Average Causal Effect $E(Y^{a=1}) - E(Y^{a=0})$

Measuring a causal effect

- ► Average Causal Effect $E(Y^{a=1}) E(Y^{a=0})$
- ► Some people could be harmed, some could be helped
- ► Suppose new policy results in .99 of individuals losing 1 dollar; .01 gains 100 dollars
- ► Positive ACE, but maybe still not a good idea
- Conditional ACE helps give more information

Measuring a causal effect

- ► Average Causal Effect $E(Y^{a=1}) E(Y^{a=0})$
- ► Some people could be harmed, some could be helped
- ► Suppose new policy results in .99 of individuals losing 1 dollar; .01 gains 100 dollars
- Positive ACE, but maybe still not a good idea
- Conditional ACE helps give more information
- ► Sharp null hypothesis: $Y_i^{a=1} = Y_i^{a=0}$ for all i
- ► Sharp null hypothesis also means ACE = 0, but not the other way around!

- ► Under conditional exchangeability, we can directly estimate the conditional average causal effect for each sub-population
- ► Conditional ACE (or ATE)

$$E(Y^{a=1} | L = \ell) - E(Y^{a=0} | L = \ell)$$

- ► When different treatments can be applied to different individuals
- ► Ex: medicine, job training program

- Under conditional exchangeability, we can directly estimate the conditional average causal effect for each sub-population
- ► Conditional ACE (or ATE)

$$E(Y^{a=1} | L = \ell) - E(Y^{a=0} | L = \ell)$$

- ► When different treatments can be applied to different individuals
- ► Ex: medicine, job training program
- ► ACE (or ATE)

$$E(Y^{a=1}) - E(Y^{a=0})$$

- ▶ When everyone gets the same treatment
- ► Ex: Tax policy, new product feature
- ► **Standardization** allows us to estimate the ACE by combining estimates from each sub-population

- ► **Standardization** allows us to estimate the ACE by combining estimates from each sub-population
- ► Use law of total expectation

- ► **Standardization** allows us to estimate the ACE by combining estimates from each sub-population
- ► Use law of total expectation

- ► **Standardization** allows us to estimate the ACE by combining estimates from each sub-population
- ▶ For L = 0, 1

$$E(Y^{a}) = Pr(L = 1)E(Y^{a} | L = 1) + Pr(L = 0)E(Y^{a} | L = 0)$$

$$= Pr(L = 1)E(Y | L = 1, A = a)$$

$$+ Pr(L = 0)E(Y | L = 0, A = a)$$

- ► **Standardization** allows us to estimate the ACE by combining estimates from each sub-population
- ▶ For L = 0, 1

$$E(Y^{a}) = Pr(L = 1)E(Y^{a} | L = 1) + Pr(L = 0)E(Y^{a} | L = 0)$$

$$= Pr(L = 1)E(Y | L = 1, A = a)$$

$$+ Pr(L = 0)E(Y | L = 0, A = a)$$

▶ More generally, for each a

$$\mathsf{E}(Y^{\mathsf{a}}) = \sum_{\ell} \mathsf{Pr}(\mathsf{L} = \ell) \mathsf{E}(\mathsf{Y} \mid \mathsf{L} = \ell, \mathsf{A} = \mathsf{a})$$

Exercise

		L	Α	Υ
1	Rheia	0	0	0
2	Kronos	0	0	1
3	Demeter	0	0	0
4	Hades	0	0	0
5	Hestia	0	1	0
6	Poseidon	0	1	0
7	Hera	0	1	0
8	Zeus	0	1	1

		L	Α	Υ
9	Artemis	1	0	1
10	Apollo	1	0	1
11	Leto	1	0	0
12	Ares	1	1	1
13	Athena	1	1	1
14	Hephaestus	1	1	1
15	Aphrodite	1	1	1
16	Polyphemus	1	1	1
17	Persephone	1	1	1
18	Hermes	1	1	0
19	Hebe	1	1	0
20	Dionysus	1	1	0

$$E(Y^{a}) = Pr(L = 1)E(Y \mid L = 1, A = a)$$

 $+ Pr(L = 0)E(Y \mid L = 0, A = a)$

Excercise

		L	Α	Υ
1	Rheia	0	0	0
2	Kronos	0	0	1
3	Demeter	0	0	0
4	Hades	0	0	0
5	Hestia	0	1	0
6	Poseidon	0	1	0
7	Hera	0	1	0
8	Zeus	0	1	1

		L	Α	Υ
9	Artemis	1	0	1
10	Apollo	1	0	1
11	Leto	1	0	0
12	Ares	1	1	1
13	Athena	1	1	1
14	Hephaestus	1	1	1
15	Aphrodite	1	1	1
16	Polyphemus	1	1	1
17	Persephone	1	1	1
18	Hermes	1	1	0
19	Hebe	1	1	0
20	Dionysus	1	1	0

$$\mathsf{E}(Y^{a=1}) = Pr(L=1)\mathsf{E}(Y \mid L=1, A=1)$$
 $+ Pr(L=0)\mathsf{E}(Y \mid L=0, A=1)$

Excercise

		L	Α	Υ
1	Rheia	0	0	0
2	Kronos	0	0	1
3	Demeter	0	0	0
4	Hades	0	0	0
5	Hestia	0	1	0
6	Poseidon	0	1	0
7	Hera	0	1	0
8	Zeus	0	1	1

		L	Α	Υ
9	Artemis	1	0	1
10	Apollo	1	0	1
11	Leto	1	0	0
12	Ares	1	1	1
13	Athena	1	1	1
14	Hephaestus	1	1	1
15	Aphrodite	1	1	1
16	Polyphemus	1	1	1
17	Persephone	1	1	1
18	Hermes	1	1	0
19	Hebe	1	1	0
20	Dionysus	1	1	0

$$E(Y^{a=1}) = \underbrace{Pr(L=1)}_{12/20} \underbrace{E(Y \mid L=1, A=1)}_{6/9} + Pr(L=0)E(Y \mid L=0, A=1)$$

Excercise

	L	Α	Υ
Rheia	0	0	0
Kronos	0	0	1
Demeter	0	0	0
Hades	0	0	0
Hestia	0	1	0
Poseidon	0	1	0
Hera	0	1	0
Zeus	0	1	1
	Kronos Demeter Hades Hestia Poseidon Hera	Kronos 0 Demeter 0 Hades 0 Hestia 0 Poseidon 0 Hera 0	Kronos 0 0 Demeter 0 0 Hades 0 0 Hestia 0 1 Poseidon 0 1 Hera 0 1

		L	Α	Υ
9	Artemis	1	0	1
10	Apollo	1	0	1
11	Leto	1	0	0
12	Ares	1	1	1
13	Athena	1	1	1
14	Hephaestus	1	1	1
15	Aphrodite	1	1	1
16	Polyphemus	1	1	1
17	Persephone	1	1	1
18	Hermes	1	1	0
19	Hebe	1	1	0
20	Dionysus	1	1	0

$$E(Y^{a=1}) = \underbrace{Pr(L=1)}_{12/20} \underbrace{E(Y \mid L=1, A=1)}_{6/9} + \underbrace{Pr(L=0)}_{8/20} \underbrace{E(Y \mid L=0, A=1)}_{1/4} = 1/2$$

Exercise

		L	Α	Υ
1	Rheia	0	0	0
2	Kronos	0	0	1
3	Demeter	0	0	0
4	Hades	0	0	0
5	Hestia	0	1	0
6	Poseidon	0	1	0
7	Hera	0	1	0
8	Zeus	0	1	1

		L	Α	Υ
9	Artemis	1	0	1
10	Apollo	1	0	1
11	Leto	1	0	0
12	Ares	1	1	1
13	Athena	1	1	1
14	Hephaestus	1	1	1
15	Aphrodite	1	1	1
16	Polyphemus	1	1	1
17	Persephone	1	1	1
18	Hermes	1	1	0
19	Hebe	1	1	0
20	Dionysus	1	1	0

$$E(Y^{a=0}) = \underbrace{Pr(L=1)}_{12/20} \underbrace{E(Y \mid L=1, A=0)}_{2/3} + \underbrace{Pr(L=0)}_{8/20} \underbrace{E(Y \mid L=0, A=0)}_{1/4}$$

Exercise

		L	Α	Υ
1	Rheia	0	0	0
2	Kronos	0	0	1
3	Demeter	0	0	0
4	Hades	0	0	0
5	Hestia	0	1	0
6	Poseidon	0	1	0
7	Hera	0	1	0
8	Zeus	0	1	1

		L	Α	Υ
9	Artemis	1	0	1
10	Apollo	1	0	1
11	Leto	1	0	0
12	Ares	1	1	1
13	Athena	1	1	1
14	Hephaestus	1	1	1
15	Aphrodite	1	1	1
16	Polyphemus	1	1	1
17	Persephone	1	1	1
18	Hermes	1	1	0
19	Hebe	1	1	0
20	Dionysus	1	1	0

$$E(Y^{a=0}) = \underbrace{Pr(L=1)}_{12/20} \underbrace{E(Y \mid L=1, A=0)}_{2/3} + \underbrace{Pr(L=0)}_{8/20} \underbrace{E(Y \mid L=0, A=0)}_{1/4} = 1/2$$

► Randomized control trials provide convincing evidence for a causal effect

- Randomized control trials provide convincing evidence for a causal effect
- ► Unless the sharp null is true, no such thing as "The" average causal effect
- ► If treatment effect is heterogeneous, ACE is defined with respect to a population of interest
- Ex: most psychology experiments consist primarily of undergraduate students. Results may be accurate for undergraduate students, but do not say much about broader population

- Drawing representative sample for RCTs yields more reliable conclusions
- ► Transporting effect to different population
 - ► Assume conditional ACE is same across populations
 - Standardization should use population weights in target population

- Consider experiment conducted on students in a psychology course at Cornell
- ▶ Let L = 0 denote undergraduate and L = 1 denote graduate student
- ► Suppose in the psychology course P(L = 0) = .95 and P(L = 1) = .05
- ▶ In an anthropology course, P(L=0) = .6 and P(L=1) = .4
- Suppose

$$E(Y^1 - Y^0 \mid L = 0) = .2$$

 $E(Y^1 - Y^0 \mid L = 1) = -.4$

► ACE for the experiment would be

$$.2 \times .95 + (-.4) \times .05 = 0.17$$

► ACE in the anthropology course would be

$$.2 \times .6 + (-.4) \times .4 = -0.04$$

Learning goals for today

At the end of class, you will be able to:

- 1. Reason about treatment effect heterogeneity
- 2. Estimate the average causal effect using data from a conditionally randomized experiment