Measuring of Causal effects and Standardization

INFO/STSCI/ILRST 3900: Causal Inference

5 Sep 2023

At the end of class, you will be able to:

- 1. Describe different ways to quantitatively measure a causal effect
- 2. Estimate the average causal effect using data from a conditionally randomized experiment

Logistics

- ► Ch 1.3 and 2.3 in Hernan and Robins 2023
- ► Problem Set 1 due last Thursday

Exchangeability may not hold in every randomized experiment

- ► Age ≥ 55 receive vaccine with 2/3; more likely to get COVID if treated
- Age < 55 get vaccine with probability 1/2; less likely to get COVID if treated

Exchangeability may not hold in every randomized experiment

- ► Age ≥ 55 receive vaccine with 2/3; more likely to get COVID if treated
- Age < 55 get vaccine with probability 1/2; less likely to get COVID if treated
- Exchangeability does not hold in entire population
- Exchangeability holds within each sub-population
- ► Two separate experiments; both are exchangeable

- Marginal exchangeability: $Y^a \perp A$ for all a
- Conditional exchangeability: Y^a \L A | L for all a The potential outcomes are independent of treatment conditional on L

 Stratification: We can directly estimate causal effect within each sub-population (or stratum)

$$\mathsf{E}(Y \mid A = a, L = \ell) \stackrel{\text{consis}}{=} \mathsf{E}(Y^a \mid A = a, L = \ell)$$
$$\stackrel{\text{exchange}}{=} \mathsf{E}(Y^a \mid L = \ell)$$

If the treatment effect varies across sub-population, we say there is treatment effect heterogeneity

$$E(Y^{a=1} \mid L = 55+) - E(Y^{a=0} \mid L = 55+) \neq \\ E(Y^{a=1} \mid L = <55) - E(Y^{a=0} \mid L = <55)$$

Can be useful in designing experiments

 If Y^{a=1} has higher variability in some sub-population, assign more units to treated group

- Can be useful in designing experiments
 - If Y^{a=1} has higher variability in some sub-population, assign more units to treated group
- Most useful as an idealized experiment to target with observational analysis
- Marginal exchangeability is very unlikely in observational data
- Conditional exchangeability may be more reasonable

Measures of association/causation¹

- For binary outcomes $Pr(Y^a = 1) = E(Y^a)$
- Average Causal Effect $E(Y^{a=1}) E(Y^{a=0})$
- ► Also called average treatment effect and causal risk difference
- No average causal effect if ACE = 0

¹Ch 1.2 and 1.3 of Hernan and Robins

Measures of association/causation¹

- For binary outcomes $Pr(Y^a = 1) = E(Y^a)$
- Average Causal Effect $E(Y^{a=1}) E(Y^{a=0})$
- ► Also called average treatment effect and causal risk difference
- No average causal effect if ACE = 0
- Sharp null hypothesis: $Y_i^{a=1} = Y_i^{a=0}$ for all *i*
- Sharp null hypothesis also means ACE = 0, but not the other way around!

¹Ch 1.2 and 1.3 of Hernan and Robins

Measures of association/causation²

Causal Risk Ratio:

$$\frac{\mathsf{E}(Y^{a=1})}{\mathsf{E}(Y^{a=0})}$$

Causal Odds Ratio:

$$\frac{Pr(Y^{a=1}=1)/Pr(Y^{a=1}=0)}{Pr(Y^{a=0}=1)/Pr(Y^{a=0}=0)}$$

²Ch 1.2 and 1.3 of Hernan and Robins

Measures of association/causation²

Causal Risk Ratio:

$$\frac{\mathsf{E}(Y^{a=1})}{\mathsf{E}(Y^{a=0})}$$

Causal Odds Ratio:

$$\frac{Pr(Y^{a=1}=1)/Pr(Y^{a=1}=0)}{Pr(Y^{a=0}=1)/Pr(Y^{a=0}=0)}$$

• No average causal effect if CRR = COR = 1

²Ch 1.2 and 1.3 of Hernan and Robins

Measures of association/causation³

- All measures will agree if $E(Y^{a=1}) = E(Y^{a=0})$
- If E(Y^{a=1}) ≠ E(Y^{a=0}), the different measures may be easier/harder to interpret
- ► What is the ACE and CRR if

•
$$E(Y^{a=1}) = .5; E(Y^{a=0}) = .25$$

•
$$E(Y^{a=1}) = .001; E(Y^{a=0}) = .0005$$

³Ch 1.2 and 1.3 of Hernan and Robins

- Under conditional exchangeability, we can directly estimate the average causal effect for each sub-population
- Standardization allows us to estimate the ACE by combining estimates from each sub-population

- Under conditional exchangeability, we can directly estimate the average causal effect for each sub-population
- Standardization allows us to estimate the ACE by combining estimates from each sub-population
- For L = 0, 1

$$E(Y^{a}) = Pr(L = 1)E(Y^{a} | L = 1)$$

+ $Pr(L = 0)E(Y^{a} | L = 0)$
= $Pr(L = 1)E(Y | L = 1, A = a)$
+ $Pr(L = 0)E(Y | L = 0, A = a)$

- Under conditional exchangeability, we can directly estimate the average causal effect for each sub-population
- Standardization allows us to estimate the ACE by combining estimates from each sub-population
- For L = 0, 1

$$E(Y^{a}) = Pr(L = 1)E(Y^{a} | L = 1) + Pr(L = 0)E(Y^{a} | L = 0) = Pr(L = 1)E(Y | L = 1, A = a) + Pr(L = 0)E(Y | L = 0, A = a)$$

$$\mathsf{E}(Y^{a}) = \sum_{\ell} \mathsf{Pr}(L = \ell) \mathsf{E}(Y \mid L = \ell, A = a)$$

$$\mathsf{E}(Y^{a}) = \sum_{\ell} \mathsf{E}(Y \mid L = \ell, A = a) \mathsf{Pr}(L = \ell)$$

Excercise

 $\mathsf{E}(Y^a) = \sum_{\ell} \mathsf{E}(Y \mid L = \ell, A = a) \mathsf{Pr}(L = \ell)$

		L	А	Y
1	Rheia	0	0	0
2	Kronos	0	0	1
3	Demeter	0	0	0
4	Hades	0	0	0
5	Hestia	0	1	0
6	Poseidon	0	1	0
7	Hera	0	1	0
8	Zeus	0	1	1

		L	Α	Y
9	Artemis	1	0	1
10	Apollo	1	0	1
11	Leto	1	0	0
12	Ares	1	1	1
13	Athena	1	1	1
14	Hephaestus	1	1	1
15	Aphrodite	1	1	1
16	Polyphemus	1	1	1
17	Persephone	1	1	1
18	Hermes	1	1	0
19	Hebe	1	1	0
20	Dionysus	1	1	0

Excercise

		L	Α	Y
1	Rheia	0	0	0
2	Kronos	0	0	1
3	Demeter	0	0	0
4	Hades	0	0	0
5	Hestia	0	1	0
6	Poseidon	0	1	0
7	Hera	0	1	0
8	Zeus	0	1	1

		L	А	Υ
9	Artemis	1	0	1
10	Apollo	1	0	1
11	Leto	1	0	0
12	Ares	1	1	1
13	Athena	1	1	1
14	Hephaestus	1	1	1
15	Aphrodite	1	1	1
16	Polyphemus	1	1	1
17	Persephone	1	1	1
18	Hermes	1	1	0
19	Hebe	1	1	0
20	Dionysus	1	1	0

$$\mathsf{E}(Y^{a}) = \mathsf{Pr}(L=1)\mathsf{E}(Y \mid L=1, A=a)$$

+ Pr(L = 0)E(Y | L = 0, A = a)

At the end of class, you will be able to:

- 1. Describe different ways to quantitatively measure a causal effect
- 2. Estimate the average causal effect using data from a conditionally randomized experiment