Exchangeability continued

INFO/STSCI/ILRST 3900: Causal Inference

5 Sept 2024

At the end of class, you will be able to:

- 1. Explain what exchangeability is and why it is important
- 2. Explain the advantages and limitations of randomized experiments
- 3. Explain marginal versus conditional exchangeability

Logistics

- ▶ Problem Set 1 due Tuesday, Sept 10th at 5pm on Canvas
- ▶ Reading: Chapter 2 (through 2.3) of Hernán & Robins
- Post questions on Ed Discussion or come to office hours!
 - ► Filippo: Mon 11am-12pm (Comstock 1187)
 - ► Sam: **Tue** 4-5pm (Comstock 1187)
 - ► Shira: Wed 3-4pm (Comstock 1187)
 - ► Mayleen: Thu 10:15-11:15am (Rhodes 657, Room 2)

Check Your understanding: Exchangeability

Definition: Exchangeability means that the potential outcomes, $Y^{a=1}$ and $Y^{a=0}$, are independent of the observed treatment (A):

In groups of 2-4, discuss the following:

- 1. (everyone) How is this different than $Y \perp A$?
- (front half) In randomized experiments, Y^a ⊥ A is usually true. Is Y ⊥ A ever true?
- 3. (*back half*) What would be an example of an experiment, random or not random, where exchangeability **does not** hold?

Exchangeability: By an experimental procedure

Question: Are both studies valid?

Yes. The (H/T) groups are **exchangeable**. Any statistical pattern between (H/T) and employment can only arise from the causal effect of job training Why is exchangeability good?

Consider the average treatement effect (ATE):

$$ATE = \underbrace{E(Y^{a=1})}_{\text{if everyone is treated}} - \underbrace{E(Y^{a=0})}_{\text{if no-one is treated}}$$

Fundamental Problem of Causal Inference: missing data!

When exchangeability is true, it implies

This allows us to identify the ATE because we can plug-in

$$\underbrace{\mathsf{E}(Y^{a=1} \mid A=1)}_{\text{outcomes for people who}} \quad \text{and} \quad \underbrace{\mathsf{E}(Y^{a=0} \mid A=0)}_{\text{outcomes for people who}}_{\text{are actually not treated}}$$

Exchangeability lets us link a causal effect to observable data.

When does exchangeability hold?

- Data does not tell us directly whether exchangeability holds
- We must know how the data was gathered
- In a simple Bernoulli(p) randomized experiment (aka A/B Test, aka "flipping coins"), exchangeability holds by design
 - To estimate the causal effect from experimental data, we can simply take the difference in observed means
- When we have observational data, things get trickier

Check Your Understanding: Exchangeability ELI5 Edition

In the same groups as before, discuss the following:

- ELI5: How would you explain exchangeability and its importance to a five year old?
- Any lingering questions related to the concepts of exchangeability and randomized experiments

A volunteer from each group should be ready to give their "ELI5" explanation of exchangeability or ask a question about exchangeability your group still has.

Limits of randomized experiments

Randomized experiments are powerful tools for learning causal relationships, but they may not be possible because of

- ► Feasibility: What is the causal effect of capitalism on a country's economic outcomes?
- Cost: What is the causal effect of giving every student a Lamborghini on traffic in Collegetown?
- Ethics: What is the causal effect on cancer of smoking cigarettes?

Causal inference with observational data is very important!

Ethical Considerations

- Experiments may have negative effect on participants or larger population¹
- Belmont Report²: Ethical principles and guidelines for the protection of human subjects of research

¹Mcdermott and Hatemi PNAS 2020 https://www.pnas.org/doi/10.1073/pnas.2012021117 ²https://www.hhs.gov/ohrp/regulations-and-policy/ belmont-report/read-the-belmont-report/index.html

Conditional randomization

We like randomized experiments because they easily satisfy exchangeability, thus linking causal effects to observable data

Does exchangeability hold in every randomized experiment?

- Causal effect of job training on employment rate
- Suppose the researchers instead split the group into two groups
 - Age \geq 18: Job training with probability 2/3
 - Age < 18: Job training with probability 1/2
- Does exchangeability still hold? Why or why not?

Conditional randomization

Exchangeability may not hold in every randomized experiment

- ► Age ≥ 18: more likely to get job training, more likely to have a job if treated
- Age < 18: less likely to get job training, less likely to have a job if treated
- ► Individuals who got job training (A_i = 1) are more likely to be employed (Y_i^{a=1} = 1) than individuals who didn't (Y_i^{a=1} = 0)
- ► In other words, the two groups are **not exchangeable**
- ► However, exchangeability holds within each sub-population
- Two separate experiments; both satisfy exchangeability

Check Your Understanding: Conditional randomization

- Marginal exchangeability: $Y^a \perp A$ for all a
- Conditional exchangeability: $Y^a \perp A \mid L$ for all a

The potential outcomes are independent of treatment **conditional on** L (e.g. L could be an indicator of age group)

- Suppose you are interested in the causal effect of a COVID vaccine on whether or not a person contracts COVID
- How would you design a study such that marginal exchangeability holds? Conditional exchangeability?

Marginal or Conditional Exchangeability as a goal

- Random experiments are the "gold standard" for estimating causal effects because its easy to satisfy exchangeability
- Imagine the "ideal experiment" to answer your question; try to replicate the "ideal experiment" with observational analysis
- When (marginal or conditional) exchangeability holds, it makes estimating causal effects from observable quantities possible
- Why conditional randomization experiment?
 - Marginal exchangeability is very unlikely in observational data
 - Conditional exchangeability may be more reasonable

At the end of class, you will be able to:

- 1. Explain what exchangeability is and why it is important
- 2. Explain the advantages and limitations of randomized experiments
- 3. Explain marginal versus conditional exchangeability

After today's lecture...

- ► Get started on Problem Set 1 if you haven't yet!
- ▶ Read Chapter 2 (through 2.3) of Hernán & Robins
- ► Set up a PollEverywhere account with your Cornell email
- Come to next lecture with a question about the reading