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Learning goals for today

At the end of class, you will have intuition for how
sample splitting makes it easier to

1. choose among many estimands

2. choose among many estimators

3. develop new data science approaches
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When you pick the biggest effect,
you select high positive noise

τ̂x = τx︸︷︷︸
signal
true

effect

+ εx︸︷︷︸
noise

sampling
variability

Solution: Two samples

I select the X -value with the biggest effect

I estimate the effect in that subgroup
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Selection sample
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Estimation sample
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True Largest Causal Effect
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Where does the pick-the-largest estimator occur in practice?

I a data scientist searchers for effect heterogeneity

I they are excited about the biggest effect

I but it is really just noise
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whenever you make many estimates
but report only one
you are at risk of this problem

Sample splitting is an answer!
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Learning goals for today

At the end of class, you will have intuition for how
sample splitting makes it easier to

1. choose among many estimands

2. choose among many estimators

3. develop new data science approaches



Sample splitting makes it easier to
choose among many estimators
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Sample splitting makes it easier to
choose among many estimators
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Sample splitting makes it easier to
develop new data science approaches
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Sample splitting makes it easier to
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Sample splitting makes it easier to
develop new data science approaches

Athey, S., & Imbens, G. (2016).
Recursive partitioning for heterogeneous causal effects.
Proceedings of the National Academy of Sciences
113(27), 7353-7360.

https://doi.org/10.1073/pnas.1510489113
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