Synthetic Control (Sam's Version)

ILRST/INFO/STSCI 3900: Causal Inference

12 Nov 2024
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Learning goals for today

At the end of class, you will be able to:
1. Explain the intuition behind synthetic control

2. Understand how synthetic control relates to other causal
inference methods
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Logistics

» This week, read Ch 10 of The Causal Inference Mixtape
» Problem Set 5 peer reviews due Nov 15

» Task 3 and 4 Check-in (assigned Nov 5, due Nov 17)

» In class project check-ins next week

» Problem Set 6 (assigned Nov 14, due Nov 21)
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What is the effect of personal events on google searches?
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What is the effect of personal events on google searches?

» Who was the last celebrity you googled?
» What do you usually google about celebrities?
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NFL Top 100

Before the start of each season, all current NFL players vote on the

top players

(1) Mahomes  (2) Jefferson (3) Hurts (4) Bosa (5) Kelce
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Google searches for NFL players
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Google searches for NFL players

= . entertainment  Movies  Television ~ Celebrity

Jason Kelce addresses Travis Kelce and
Taylor Swift dating speculation

By Lisa Respers France, CNN
Published 11:57 AM EDT, Fri September 15, 2023

Iy=oe

6/18



Google searches for NFL players

Taylor Swift’s The Eras Tour
Could Generate $4.6 Billion For

Local Economies
e e e 'E!’l
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Google searches for NFL players
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Google searches for NFL players

What is the causal effect of dating Taylor Swift on google
searches?
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Google searches for NFL players
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Google searches for NFL players

What is the causal effect of dating Taylor Swift on google
searches?

» Causal effect may vary over time
» Causal effect at time t

YSwift NoSwift

Tt,Kelce = Tt Kelce — Tt,Kelce

» For notation, let Ty denote the time that the treatment occurs

> We observe Y2, for t > Tg and YN2,, . for t < T, but
not at the same timel

7/18



Google searches for NFL players

What is the causal effect of dating Taylor Swift on google
searches?

» Causal effect may vary over time
» Causal effect at time t

YSwift NoSwift

Tt,Kelce = Tt Kelce — Tt,Kelce

» For notation, let Ty denote the time that the treatment occurs

> We observe Y2, for t > Tg and YN2,, . for t < T, but
not at the same timel

» Blank space in our data
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Google searches for NFL players
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» Kelce and Mahomes play for
» Kelce and Jefferson play simi

the same team
lar positions

» Kelce and Bosa both went to college in Ohio
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Synthetic Control
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Synthetic Control

» Google searches for NFL players are affected by many things
that change over time

» Trend prior in pre-season may not be a good trend for during
season

» Estimating the effect far away from the treatment seems iffy
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Synthetic Control

» Google searches for NFL players are affected by many things
that change over time

» Trend prior in pre-season may not be a good trend for during
season

» Estimating the effect far away from the treatment seems iffy

» Kelce doesn’t quite match any individual player exactly, but is
similar to other players in different ways
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Synthetic Control
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Synthetic Control

» We don't observe YtN}%elce after Ty

NS NS
> We do observe Y, nomes: Yt Aurts: €LC.
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Synthetic Control

» We don't observe YtN}%elce after Ty

NS NS
> We do observe Y, nomes: Yt Aurts: €LC.

» Create a “synthetic” version of of Kelce by weighting other
players

NS ~ NS NS NS NS
Yt,Kelce ~wm Yt,Mahomes +w Yt,Hurts +ws3 Yt,Bosa +wy Yt,JefFerson

where w; > 0and ) wj =1
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Synthetic Control

v

' NS
We don't observe \/“(e,ce after Ty

NS NS
We do observe Y, 5 homes: Yt Hurts: €tC-

Create a “synthetic” version of of Kelce by weighting other
players

NS ~ NS NS NS NS
Yt,Kelce ~wm Yt,Mahomes +w Yt,Hurts +ws3 Yt,Bosa +wy Yt,JefFerson

where w; > 0and ) wj =1
So perhaps, Synthetic Kelce is
» 50% Patrick Mahomes
» 25% Justin Jefferson
» 25% Nick Bosa
» 0% Jalen Hurts
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Synthetic Control

» Estimate counterfactual Travis Kelce Y ‘Relce DY using
Synthetic Kelce

Yt ,Synthetic — =.5x Yt,Mahomes + .25 x Yt,Bosa + .25 x Yt,JefFerson
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Synthetic Control

» Estimate counterfactual Travis Kelce Y ‘Relce DY using
Synthetic Kelce

Yt ,Synthetic — =.5x Yt,Mahomes + .25 x Yt,Bosa + .25 x Yt,JefFerson
» Post-treatment at time t, use difference between observed
Kelce and Synthetic Kelce as estimate of the causal effect

. NS
Tt = Yt Kelce = Yt Synthetic

» Straightforward approach boils down to picking “good”
weights
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Picking Weights
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Picking Weights

> We want “Synthetic Kelce" to predict Y2

» We observe Y; kelce = Ythe,ce before treatment when t < Ty
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Picking Weights

> We want “Synthetic Kelce" to predict Y2

» We observe Y; kelce = Ythe,ce before treatment when t < Ty

» Select weights to minimize

E YiKelce = W1Yem + w2 Yoy +w3Yig + waYiy
t<To

Yt, Synthetic

12/18



Picking Weights

> We want “Synthetic Kelce" to predict Y2

» We observe Y; kelce = Ythe,ce before treatment when t < Ty

» Select weights to minimize

E YiKelce = W1Yem + w2 Yoy +w3Yig + waYiy
t<To

Yt, Synthetic

» Can also be selected to minimize discrepancy between other
pre-treatment covariates (preview of discussion)
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Synthetic Control
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Synthetic Control
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Synthetic Control

Pros:

» Counterfactual prediction is easy to understand and explain
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Synthetic Control

Pros:
» Counterfactual prediction is easy to understand and explain

» Works well when there are not many units and a single good
match may be difficult to find

» Allows for extrapolation away from treatment time
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» Requires lots of pre-treatment data to pick good weights
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Synthetic Control

Synthetic control “is arguably the most important innovation in
the policy evaluation literature in the last 15 years” (Athey and
Imbens 2017)
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https://pubs.aeaweb.org/doi/pdfplus/10.1257/jep.31.2.3
https://pubs.aeaweb.org/doi/pdfplus/10.1257/jep.31.2.3
https://www.aeaweb.org/articles?id=10.1257/000282803321455188
https://www.tandfonline.com/doi/abs/10.1198/jasa.2009.ap08746

Synthetic Control

Synthetic control “is arguably the most important innovation in
the policy evaluation literature in the last 15 years” (Athey and
Imbens 2017)

Examples:

» What is the effect of political instability on the economy in
Basque country in the 1960-70s?
(Abadie and Gardeazabal 2003)

» What is the effect of a cigarette tax on smoking in California?
(Abadie, Diamond, Hainmueller 2010)
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Synthetic control and Matching
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Synthetic control and Matching

In some ways, synthetic control can be seen as a specific form of
matching

» Predict unobserved potential outcome using observed
outcome of “similar” units

» Can choose “matches” (i.e., weights) to match untreated
outcomes (of eventually treated unit)
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Synthetic control and Matching

In some ways, synthetic control can be seen as a specific form of
matching

» Predict unobserved potential outcome using observed
outcome of “similar” units

» Can choose “matches” (i.e., weights) to match untreated
outcomes (of eventually treated unit)

» Synthetic control differs in how weights are chosen

» Data across time (longitudinal) so we also observed untreated
outcomes of (eventually) treated unit

» Can directly match to minimize pre-treatment fit
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Synthetic control and Difference and Difference
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Synthetic control and Difference and Difference

» Both have observations pre and post treatment

» Diff-in-Diff requires parallel trends assumption
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Synthetic control and Difference and Difference

v

Both have observations pre and post treatment

Diff-in-Diff requires parallel trends assumption

In synthetic control, we have a similar assumption, but parallel
trends holds for synthetic unit

Generally, Diff-in-Diff has fixed set of comparison units using
prior knowledge (i.e., NJ vs PA)
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Synthetic control and Difference and Difference

v

Both have observations pre and post treatment
Diff-in-Diff requires parallel trends assumption

In synthetic control, we have a similar assumption, but parallel
trends holds for synthetic unit

Generally, Diff-in-Diff has fixed set of comparison units using
prior knowledge (i.e., NJ vs PA)

Synthetic control, we can start with a large “donor pool” and
select weights using data
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Learning goals for today

At the end of class, you will be able to:
1. Explain the intuition behind synthetic control

2. Understand how synthetic control relates to other causal
inference methods
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