Synthetic Control Discussion

INFO/STSCI/ILRST 3900: Causal Inference

13 Nov 2024

Synthetic Control: big idea

- Many pre- and post-treatment periods in the data
- Treated unit is "unique", there is no single control unit that is a direct match
- Construct synthetic unit to approximate untreated version of treated unit using weighted average of untreated units
- Pick weights to match pre-treatment characteristics (either covariates or observations)

Synthetic Control: big idea

Group Activity: In groups of 2-3...

- Icebreaker: share your name and something you're looking forward to over winter break
- Compare and contrast synthetic control with matching (what is similar? what is different?)
- Compare and contrast synthetic control with difference in differences (what is similar? what is different?)
- When would you use synthetic control versus difference in differences versus matching?

Synthetic control and Matching

In some ways, synthetic control can be seen as a specific form of matching

Predict unobserved potential outcome using observed outcome of "similar" units

Synthetic control and Matching

In some ways, synthetic control can be seen as a specific form of matching

- Predict unobserved potential outcome using observed outcome of "similar" units
- With matching, typically looking for the single most "similar" unit or average of "k closest" units
- Synthetic control: we actually create an *artificial* (i.e. synthethic) unit to match the treated unit to

Synthetic control and Matching

In some ways, synthetic control can be seen as a specific form of matching

- Predict unobserved potential outcome using observed outcome of "similar" units
- With matching, typically looking for the single most "similar" unit or average of "k closest" units
- Synthetic control: we actually create an *artificial* (i.e. synthethic) unit to match the treated unit to
- ► This "match" is a weighted combination of control units
- ► Example: "Synthetic" Travis Kelce

$$Y_{t,Synthetic}^{\mathsf{NS}} = .5 imes Y_{t,Mahomes} + .25 imes Y_{t,Bosa} + .25 imes Y_{t,Jefferson}$$

Synthetic control and Difference and Difference

Both have observations pre and post treatment

Synthetic control and Difference and Difference

- Both have observations pre and post treatment
- ► Diff-in-Diff: requires parallel trends assumption
- Synthetic control: similar assumption, parallel trends holds for synthetic unit

Synthetic control and Difference and Difference

- Both have observations pre and post treatment
- ► Diff-in-Diff: requires parallel trends assumption
- Synthetic control: similar assumption, parallel trends holds for synthetic unit
- Generally, Diff-in-Diff has fixed set of comparison units using prior knowledge (i.e., NJ vs PA)
- Synthetic control, we can start with a large "donor pool" and select weights using data

In class, we mentioned selecting weights to directly minimize pre-treatment fit

- Intuition:
 - synthetic unit represents the treated unit under no treatment
 - in pre-treatment period, treated unit has not yet received treatment
 - outcomes of the synthetic unit pre-treatment should be very close to the outcomes of the treated unit pre-treatment

- X₁: vector of pre-treatment covariates for the (eventually) treated unit (including some pre-treatment observations)
- X_0 : matrix of corresponding of covariates for the donor pool
- Let V be a diagonal matrix
 - element v_{ii} is weight for covariate *i* representing how important that covariate is in the matching
 - we get to pick V first
- ► Select weights *w_i* to minimize

$$(X_1 - X_0 W)^T V(X_1 - X_0 W) = \sum_h v_{h,h} (X_{1,h} - \sum_j w_j X_{j,h})^2$$

so that for each covariate $X_{1,h}$

$$X_{1,h} \approx \sum_{j} w_j X_{j,h}$$

▶ Where does V show up in the equation above?

- Different V lead to different optimal weights w(V)
- ► There are different ways to choose V
- Most commonly select V to minimize pre-treatment mean squared error

$$\sum_{t < T_0} \left(Y_{t,0} - \sum_j w_j(V) Y_{t,j} \right)^2$$

Why? because we want our synthetic version of the treated unit to actually match the treated unit's outcomes in the pre-treatment period

- Different V lead to different optimal weights w(V)
- ► There are different ways to choose V
- Most commonly select V to minimize pre-treatment mean squared error

$$\sum_{t < T_0} \left(Y_{t,0} - \sum_j w_j(V) Y_{t,j} \right)^2$$

Why? because we want our synthetic version of the treated unit to actually match the treated unit's outcomes in the pre-treatment period

Group Activity: In the same groups as before, discuss why we want the pre-treatment outcomes of the synthetic unit and treated unit to match.

Synthetic Control - Application

Research Question: Does violent conflict affect economic output?

- In the mid 1970's the Basque Country region of Spain was afflicted by a series of violent terrorist attacks.
- This was specific to the Basque Country region and did not affect the other regions of Spain.
- We can use Synthetic Control here! The pre-treatment period is before the terrorist attacks, and all the other regions in Spain will form our synthetic control donor pool!
- We will construct a control unit from all other regions and then compare the economic output of the Basque Country region after the terrorist attacks to our control unit.

How do we check if our Synthetic Control is any good !?

- Like matching, construct synthetic control using covariates, including regional economic activity, population levels, etc.
- Like matching, we want our treated unit and our synthetic control to be balanced on covariates

Ireated	Synthetic	Sample Mean
39.888	256.335	170.786
1031.742	2730.092	1127.186
90.359	223.341	76.260
25.728	63.437	24.235
13.480	36.154	13.478
24.647	21.583	21.424
5.285	5.271	3.581
6.844	6.179	21.353
4.106	2.760	5.310
45.082	37.636	22.425
6.150	6.952	7.276
33.754	41.104	36.528
4.072	5.371	7.111
246.890	196.287	99.414
	17eated 39.888 1031.742 90.359 25.728 13.480 24.647 5.285 6.844 4.106 45.082 6.150 33.754 4.072 246.890	Preated Synthetic 39.888 256.335 1031.742 2730.092 90.359 223.341 25.728 63.437 13.480 36.154 24.647 21.583 5.285 5.271 6.844 6.179 4.106 2.760 45.082 37.636 6.150 6.952 33.754 41.104 4.072 5.371 246.890 196.287

How do we check if our Synthetic Control is any good !?

- Like matching, construct synthetic control using covariates, including regional economic activity, population levels, etc.
- Like matching, we want our treated unit and our synthetic control to be balanced on covariates

	Ireated	Synthetic	Sample Mean
school.illit	39.888	256.335	170.786
school.prim	1031.742	2730.092	1127.186
school.med	90.359	223.341	76.260
school.high	25.728	63.437	24.235
school.post.high	13.480	36.154	13.478
invest	24.647	21.583	21.424
special.gdpcap.1960.1969	5.285	5.271	3.581
special.sec.agriculture.1961.1969	6.844	6.179	21.353
special.sec.energy.1961.1969	4.106	2.760	5.310
<pre>special.sec.industry.1961.1969</pre>	45.082	37.636	22.425
<pre>special.sec.construction.1961.1969</pre>	6.150	6.952	7.276
<pre>special.sec.services.venta.1961.1969</pre>	33.754	41.104	36.528
<pre>special.sec.services.nonventa.1961.1969</pre>	4.072	5.371	7.111
special.popdens.1969	246.890	196.287	99.414

Group Activity: Same groups as before: what would covariate balance look like here? Does the balance seem good here?

We let an optimization algorithm pick weights. Then, we can actually look at the weights!

w.weights	unit.names	unit.numbers
0.000	Andalucia	2
0.000	Aragon	3
0.000	Principado De Asturias	4
0.000	Baleares (Islas)	5
0.000	Canarias	6
0.000	Cantabria	7
0.000	Castilla Y Leon	8
0.000	Castilla–La Mancha	9
0.851	Cataluna	10
0.000	Comunidad Valenciana	11
0.000	Extremadura	12
0.000	Galicia	13
0.149	Madrid (Comunidad De)	14
0.000	Murcia (Region de)	15
0.000	Navarra (Comunidad Foral De)	16
0.000	Rioja (La)	18

We let an optimization algorithm pick weights. Then, we can actually look at the weights!

w.weights	unit.names	unit.numbers
0.000	Andalucia	2
0.000	Aragon	3
0.000	Principado De Asturias	4
0.000	Baleares (Islas)	5
0.000	Canarias	6
0.000	Cantabria	7
0.000	Castilla Y Leon	8
0.000	Castilla–La Mancha	9
0.851	Cataluna	10
0.000	Comunidad Valenciana	11
0.000	Extremadura	12
0.000	Galicia	13
0.149	Madrid (Comunidad De)	14
0.000	Murcia (Region de)	15
0.000	Navarra (Comunidad Foral De)	16
0.000	Rioja (La)	18

Group Activity: Same groups as before: what do you notice about the weights? how do we interpret this?

Synthetic Control versus Regression: Interpretability

- By restricting weights in synthetic control to be non-negative and sum to one, we introduce *sparsity*
- ► By *sparsity*, we mean many weights equal 0
- Also, with this restriction, makes the synthetic control easy-to-interpret
- Example: Basque Country in Spain is about 85% Cataluna and about 15% Madrid
- Could use regression instead without restricting the weights, but then you don't get sparsity and you may get negative weights... what does it mean for a region to be negative percent of another?

Is there a Causal Effect?

- Goal: estimate the causal effect of violent conflict on economic output
- ► How do we determine if there really is a causal effect?
- Compare economic output of the Basque Country region to our synthetic control unit after the terrorist attacks began

year

Is there a Causal Effect?

- Goal: estimate the causal effect of violent conflict on economic output
- ► How do we determine if there really is a causal effect?
- Compare economic output of the Basque Country region to our synthetic control unit after the terrorist attacks began

This trend indicates that economic output dropped by quite a bit as a result of the violent conflict!

13/14

Check Your Understanding

- What do you notice about the outcomes of Basque country and synthetic Basque country in the pre-treatment period?
- Based on the post-treatment period, why might we think there is a causal effect?

year