
Matching Lab

INFO/STSCI/ILRST 3900: Causal Inference

4 Oct 2023
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Agenda

▶ Reminders/Announcements

▶ Icebreaker: Matching Lecture Review

▶ Matching with Multiple Covariates Overview

▶ R Demonstration

▶ Your turn (get ahead on the HW!)
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Icebreaker: Matching Lecture Review
In groups of 2-4, you will be assigned one of the questions below.
Your task is to explain and answer the assigned question. Have one
person in your group ready to share what you discuss with the
whole class.

1. What is the difference between the ATE and the ATT, and
what is the challenge in estimating the ATT?

2. Explain what matching is and how we use it to estimate
causal effects (like the ATT).

3. What is the difference between caliper versus no caliper
matching, and what changes in the estimand when we use
calipers?

4. What is 1 : 1 matching versus k : 1 matching? Explain the
bias-variance trade off.

5. What is matching with replacement and without replacement?
Explain the bias-variance trade off.

6. What is greedy versus optimal matching and what trade off
should be considered there?
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What if L⃗ is multivariate?

Job Training

Age

Education

Income

▶ Conditional exchangeability holds when conditioning on Age
and Education!

▶ Estimate E (Y a=0 | A = 1) with a group of untreated units,
M, which has a similar distribution of Age and Education to
the treated group
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What if L⃗ is multivariate?

Age

Education Length = 4

Length = 3

Length = 5

Length = 6
•

•

•
Treated

Untreated 1

Untreated 2

Which untreated unit should be the match?
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What if L⃗ is multivariate? We need a distance metric

Age

Education Length = 4

Length = 3

Length = 5

Length = 6
•

•

•
Treated

Untreated 1

Untreated 2

▶ Define a way to measure “distance” between two individuals
as a single number

▶ Match individuals in the same way as before using that
distance!
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What if L⃗ is multivariate? We need a distance metric

Age

Education Length = 4

Length = 3

Length = 5

Length = 6
•

•

•
Treated

Untreated 1

Untreated 2

▶ Manhattan distance:

d(i , j) =
∑

p|Lpi − Lpj |
▶ d(Treated, Untreated 1) = 3 + 4 = 7
▶ d(Treated, Untreated 2) = 6 + 0 = 6 ✓

▶ Euclidean distance:

d(i , j) =
√∑

p (Lpi − Lpj)
2

▶ d(Treated, Untreated 1) =
√
32 + 42 = 5 ✓

▶ d(Treated, Untreated 2) =
√
62 + 02 = 6

▶ It depends on the distance metric!
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A common distance metric: Mahalanobis distance

Motivated by two principles

▶ Principle 1: Address unequal variances

▶ Age might range uniformly from 18 to 80
▶ Education range uniformly from 0 to 16
▶ We might correct for this so age doesn’t dominate the distance

▶ Principle 2: Address correlations

▶ Suppose we included age in years, age in months, and
education

▶ Suppose we included age in years and age in months are very
correlated

▶ We should care about a correlation-corrected distance

d(i , j) =

√(
L⃗i − L⃗j

)T
Σ−1

(
L⃗i − L⃗j

)
where Σ = V(L⃗), the variance-covariance matrix of L
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Code

Let’s try this out in R!
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