Discussion. Parametric g-formula: Outcome modeling

Cornell STSCI / INFO / ILRST 3900 Fall 2023
causal3900.github.io

27 Sep 2023

Reminders and Announcements

- HW 3 due tomorrow (September 28) by 5pm
- Submit a PDF from RMarkdown via Canvas
- Standard office hours
- Check Ed for HW questions!

Agenda

- Reminders and Announcements
- Icebreaker Activity: Curse of dimensionality and possible issues with non-parametric estimation review
- Group Exercise: Parametric estimation (g-formula)
- Homework Check-in and Questions

Icebreaker

Introduce yourselves!

1. What is the curse of dimensionality?
2. How does this relate to non-parametric estimation?
3. How do we know when non-parametric estimation might be impossible?

- Feel free to look at yesterday's slides.

Where lecture ended

100% of the sample

is in a subgroup with either 0 treated or 0 untreated units

Setup

Follow the instructions on Ed to download the data!

Statistical modeling

Under exchangeability,

$$
E\left(Y^{a} \mid \vec{L}=\vec{\ell}\right)=E(Y \mid A=a, \vec{L}=\vec{\ell})
$$

To estimate, we have been taking the subgroup mean

$$
\hat{E}(Y \mid A=a, \vec{L}=\vec{\ell})=\frac{1}{n_{a, \vec{\ell}}} \sum_{i: A_{i}=a, \vec{L}_{i}=\vec{\ell}} Y_{i}
$$

When subgroups are empty, we need a model. Example:

$$
\hat{E}(Y \mid A=a, \vec{L}=\vec{\ell})=\hat{\alpha}+A \hat{\beta}+\vec{L}^{\prime} \hat{\vec{\gamma}}+A \vec{L}^{\prime} \hat{\vec{\eta}}
$$

Parametric g-formula: Outcome modeling

1. Learn a model to predict Y given $\{A, \vec{L}\}$
2. For each i, predict

- $\left\{A=1, \vec{L}=\vec{\ell}_{i}\right\}$, the conditional average outcome under treatment
- $\left\{A=0, \vec{L}=\vec{\ell}_{i}\right\}$, the conditional average outcome under control

3. Take the difference for each unit
4. Average over the units

G-formula: Data example

Estimate a model based on the true data
\# A tibble: 10 x 4

| | a | y | sex |
| :--- | :--- | :--- | :--- | race

Predict values - control

Predict the counterfactuals when everybody is in the control group

```
# A tibble: 10 x 3
a sex race
    <chr> <chr> <fct>
    1 \text { no_college Female Non-Hispanic Non-Black}
    2 no_college Female Non-Hispanic Non-Black
    3 \text { no_college Male Non-Hispanic Non-Black}
    4 \text { no_college Male Non-Hispanic Non-Black}
    5 \text { no_college Male Hispanic}
    6 \text { no_college Female Hispanic}
    7 no_college Male Hispanic
    8 no_college Female Hispanic
    9 no_college Male Hispanic
10 no_college Female Hispanic
```


Predict values - treatment

Predict the counterfactuals when everybody is in the treatment group

```
# A tibble: 10 x 3
    a sex race
    <chr> <chr> <fct>
    1 college Female Non-Hispanic Non-Black
    2 college Female Non-Hispanic Non-Black
    3 college Male Non-Hispanic Non-Black
    4 college Male Non-Hispanic Non-Black
    5 college Male Hispanic
    6 college Female Hispanic
    7 college Male Hispanic
    8 college Female Hispanic
    9 college Male Hispanic
10 college Female Hispanic
```


1. Learn a model to predict Y given $\{A, \vec{L}\}$

$$
\begin{aligned}
\text { fit <- lm(y ~ a + } & \text { sex + race + mom_educ + dad_educ + } \\
& \text { log_parent_income + } \\
& \text { log_parent_wealth + } \\
& \text { test_percentile, } \\
\text { data }= & \text { d) }
\end{aligned}
$$

2. Predict conditional average potential outcomes for every

 unit```
conditional_average_outcomes <- d %>%
 mutate(yhat1 = predict(fit,
 newdata = d %>%
 mutate(a = "college")),
 yhat0 = predict(fit,
 newdata = d %>%
 mutate(a = "no_college")))
```


## 3. Difference to estimate conditional average effects

```
conditional_average_effects <-
 conditional_average_outcomes %>%
 mutate(effect = yhat1 - yhat0)
```


## 4. Average over units

```
conditional_average_effects %>%
 select(yhat1, yhat0, effect) %>%
 summarize_all(.funs = mean)
A tibble: 1 x 3
 yhat1 yhat0 effect
 <dbl> <dbl> <dbl>
10.427 0.164 0.263
```


## Recap. Parametric g-formula: Outcome modeling

1. Learn a model to predict $Y$ given $\{A, \vec{L}\}$
2. For each $i$, predict

- $\left\{A=1, \vec{L}=\vec{\ell}_{i}\right\}$, the conditional average outcome under treatment
- $\left\{A=0, \vec{L}=\vec{\ell}_{i}\right\}$, the conditional average outcome under control

3. Take the difference for each unit
4. Average over the units

## Extension 1: Conditional average effects

Modify the procedure above to estimate the average effect in subgroups defined by mom's education:

1. those with sex == Male
2. those with sex == Female

If you finish, choose a subgroup of interest to you and summarize.

## Extension 1: Conditional average effects

Modify the procedure above to estimate the average effect in subgroups defined by mom's education:

1. those with sex == Male
2. those with sex == Female

If you finish, choose a subgroup of interest to you and summarize.
One way to code it:

```
conditional_average_effects %>%
 group_by(sex) %>%
 select(sex, yhat0,yhat1,effect) %>%
 summarize_all(.funs = mean)
 # A tibble: 2 x 4
 sex yhat0 yhat1 effect
 <chr> <dbl> <dbl> <dbl>
 1 Female 0.125 0.388 0.263
 2 Male 0.203 0.466 0.263
```


## Extension 2: Logistic regression

In groups: Repeat the steps above with logistic regression

$$
\log \left(\frac{\hat{P}(Y \mid A=a, \vec{L}=\vec{\ell})}{1-\hat{P}(Y \mid A=a, \vec{L}=\vec{\ell})}\right)=\hat{\alpha}+A \hat{\beta}+\vec{L}^{\prime} \hat{\vec{\gamma}}+A \vec{L}^{\prime} \hat{\vec{\eta}}
$$

Helpful hints:

- read about using $\operatorname{glm}()$ to estimate logistic regression
when using predict(), search to find out how to predict probabilities


## Extension: Logistic regression

Fit a model

$$
\begin{aligned}
\text { fit <- glm(y ~ a* } & (\text { sex }+ \text { race + mom_educ + dad_educ + } \\
& \text { log_parent_income + } \\
& \text { log_parent_wealth }+ \\
& \text { }
\end{aligned}
$$

## Extension: Logistic regression

Predict and summarize to estimate the average effect

```
d %>%
 mutate(yhat1 = predict(fit,
 newdata = d %>%
 mutate(a = "college"),
 type = "response"),
 yhat0 = predict(fit,
 newdata = d %>%
 mutate(a = "no_college"),
 type = "response"),
 effect = yhat1 - yhat0) %>%
 select(yhat1,yhat0,effect) %>%
 summarize_all(.funs = mean)
A tibble: 1 x 3
 yhat1 yhat0 effect
 <dbl> <dbl> <dbl>
1 0.406 0.165 0.241
```


## Recap. Parametric g-formula: Outcome modeling

1. Learn a model to predict $Y$ given $\{A, \vec{L}\}$
2. For each $i$, predict

- $\left\{A=1, \vec{L}=\vec{\ell}_{i}\right\}$, the conditional average outcome under treatment
- $\left\{A=0, \vec{L}=\vec{\ell}_{i}\right\}$, the conditional average outcome under control

3. Take the difference for each unit
4. Average over the units
