Discussion. Parametric g-formula: Outcome modeling

Cornell STSCI / INFO / ILRST 3900 Fall 2024 causal3900.github.io

09 Oct 2024

Agenda

Reminders and Announcements

- ▶ In class assignment: Parametric estimation (g-formula)
- Homework Check-in and Questions

Reminders and Announcements

► HW 3 due Friday (Oct 11) by 11:59pm Submit a PDF from RMarkdown via Canvas

- Task 2 due Thursday (Oct 17) by 11:59pm
- Office hours
 - Filippo:

Monday 11am-12pm in Comstock 1187 Thursday 11am-12pm in Comstock 1187

Shira:

Tuesday 3-4pm in in Comstock 1187

Check Ed for HW guestions!

Follow the instructions on Ed to download the data!

Statistical modeling

Under exchangeability,

$$E\left(Y^{a} \mid \vec{L} = \vec{\ell}\right) = E\left(Y^{a} \mid A = a, \vec{L} = \vec{\ell}\right)$$

Under consistency,

$$E\left(Y^{a} \mid A = a, \vec{L} = \vec{\ell}\right) = E\left(Y \mid A = a, \vec{L} = \vec{\ell}\right)$$

To estimate, we have been taking the subgroup mean

$$\hat{E}(Y \mid A = a, \vec{L} = \vec{\ell}) = \frac{1}{n_{a,\vec{\ell}}} \sum_{i:A_i = a, \vec{L}_i = \vec{\ell}} Y_i$$

When subgroups are empty, we need a model. Example:

$$\hat{E}\left(Y \mid A = a, \vec{L} = \vec{\ell}\right) = \hat{\alpha} + A\hat{\beta} + \vec{L}'\hat{\vec{\gamma}} + A\vec{L}'\hat{\vec{\eta}}$$

Parametric g-formula: Outcome modeling

- 1. Learn a model to predict Y given $\{A, \vec{L}\}$
- 2. For each i, predict
 - $\blacktriangleright ~ \{A=1, \vec{L}=\vec{\ell}_i\},$ the conditional average outcome under treatment
 - $\blacktriangleright~\{A=0,\vec{L}=\vec{\ell}_i\},$ the conditional average outcome under control
- 3. Take the difference for each unit
- 4. Average over the units

G-formula: Data example

Estimate a model based on the true data

```
# A tibble: 10 x 4
```

	a	У	sex	race	
	<chr></chr>	<lgl></lgl>	<chr></chr>	<fct></fct>	
1	college	FALSE	Female	Non-Hispanic	Non-Black
2	college	FALSE	Female	Non-Hispanic	Non-Black
3	college	TRUE	Male	Non-Hispanic	Non-Black
4	college	TRUE	Male	Non-Hispanic	Non-Black
5	no_college	FALSE	Male	Hispanic	
6	no_college	FALSE	Female	Hispanic	
7	no_college	TRUE	Male	Hispanic	
8	no_college	FALSE	Female	Hispanic	
9	no_college	FALSE	Male	Hispanic	
10	no_college	FALSE	Female	Hispanic	

Predict values - control

Predict the counterfactuals when everybody is in the control group

```
# A tibble: 10 \times 3
   а
              sex
                     race
   <chr>
             <chr> <fct>
 1 no_college Female Non-Hispanic Non-Black
 2 no_college Female Non-Hispanic Non-Black
 3 no_college Male Non-Hispanic Non-Black
 4 no_college Male Non-Hispanic Non-Black
 5 no_college Male Hispanic
 6 no_college Female Hispanic
 7 no_college Male Hispanic
 8 no_college Female Hispanic
 9 no_college Male
                     Hispanic
10 no_college Female Hispanic
```

Predict values - treatment

Predict the counterfactuals when everybody is in the treatment group

# I	A tibble:	: 10 x 3	3	
	a	sex	race	
	<chr></chr>	<chr></chr>	<fct></fct>	
1	college	Female	Non-Hispanic	Non-Black
2	college	Female	Non-Hispanic	Non-Black
3	college	Male	Non-Hispanic	Non-Black
4	college	Male	Non-Hispanic	Non-Black
5	college	Male	Hispanic	
6	college	Female	Hispanic	
7	college	Male	Hispanic	
8	college	Female	Hispanic	
9	college	Male	Hispanic	
10	college	Female	Hispanic	

1. Learn a model to predict Y given $\{A,\vec{L}\}$

2. Predict conditional average potential outcomes for every unit

3. Difference to estimate conditional average effects

```
conditional_average_effects <-
   conditional_average_outcomes %>%
   mutate(effect = yhat1 - yhat0)
```

4. Average over units

```
conditional_average_effects %>%
  select(yhat1, yhat0, effect) %>%
  summarize_all(.funs = mean)
```

A tibble: 1 x 3
 yhat1 yhat0 effect
 <dbl> <dbl> <dbl>
1 0.427 0.164 0.263

Recap. Parametric g-formula: Outcome modeling

- 1. Learn a model to predict Y given $\{A,\vec{L}\}$
- 2. For each i, predict
 - $\blacktriangleright ~ \{A=1, \vec{L}=\vec{\ell}_i\},$ the conditional average outcome under treatment
 - $\blacktriangleright~\{A=0,\vec{L}=\vec{\ell}_i\},$ the conditional average outcome under control
- 3. Take the difference for each unit
- 4. Average over the units

Extension 1: Conditional average effects

Modify the procedure above to estimate the average effect in subgroups defined by mom's education:

- 1. those with sex == Male
- 2. those with sex == Female

If you finish, choose a subgroup of interest to you and summarize.

Extension 1: Conditional average effects

Modify the procedure above to estimate the average effect in subgroups defined by mom's education:

- 1. those with sex == Male
- 2. those with sex == Female

If you finish, choose a subgroup of interest to you and summarize.

One way to code it:

```
conditional_average_effects %>%
  group_by(sex) %>%
  select(sex, yhat0,yhat1,effect) %>%
  summarize all(.funs = mean)
```

A tibble: 2 x 4
 sex yhat0 yhat1 effect
 <chr> <dbl> <dbl> <dbl> <dbl>
1 Female 0.125 0.388 0.263
2 Male 0.203 0.466 0.263

Extension 2: Logistic regression

In groups: Repeat the steps above with logistic regression

$$\log\left(\frac{\hat{P}\left(Y\mid A=a,\vec{L}=\vec{\ell}\right)}{1-\hat{P}\left(Y\mid A=a,\vec{L}=\vec{\ell}\right)}\right) = \hat{\alpha} + A\hat{\beta} + \vec{L}'\hat{\vec{\gamma}} + A\vec{L}'\hat{\vec{\eta}}$$

Helpful hints:

read about using glm() to estimate logistic regression
 when using predict(), search to find out how to predict probabilities

Extension: Logistic regression

Extension: Logistic regression

Predict and summarize to estimate the average effect

A tibble: 1 x 3
yhat1 yhat0 effect
<dbl> <dbl> <dbl>
1 0.406 0.165 0.241

Recap. Parametric g-formula: Outcome modeling

- 1. Learn a model to predict Y given $\{A,\vec{L}\}$
- 2. For each i, predict
 - $\blacktriangleright ~ \{A=1, \vec{L}=\vec{\ell}_i\},$ the conditional average outcome under treatment
 - $\blacktriangleright~\{A=0,\vec{L}=\vec{\ell}_i\},$ the conditional average outcome under control
- 3. Take the difference for each unit
- 4. Average over the units