Discussion

INFO/STSCI/ILRST 3900: Causal Inference

24 Sep 2025

Agenda

- ► Reminders and Announcements
- ► Colliders: with example in R
- ► Review: open/closed paths and independence in DAGs
- ► Practice with DAGs
- ► Causal Discovery

Reminders and Announcements

- ▶ Peer reviews- make sure to review all you're assigned by 9/26
- ► You get 5 flex days, use them!
- ► Office hours:
 - ► Filippo: Thursday 4-5 pm in 321A CIS Building
 - ► Shira: Monday 5-6 pm in 329A CIS Building
 - ► Sam: Tuesday 4-5 pm, in 350 CIS Building
- Check Ed for announcements and use for HW help!

Collider

Collider

Collider

▶ If there is a causal path $X \to ... \to Z$, then Z is a descendant of X

Colliders

For Colliders \rightarrow $Z \leftarrow$

Colliders

For Colliders \rightarrow *Z* \leftarrow

- ► If Z (or any descendant of Z) is in the conditioning set, then Z is open
- ► Otherwise Z is blocked

DAGs help us reason about exchangeability

Procedure

- 1) List all paths between A to Y
- 2) Cross out the blocked paths (conditional on *L*)
- 3) Conditional Exchangeability holds if all remaining paths are causal

Open or blocked?

How to check if a path is open or blocked:

- 1. Traverse the path node by node
- 2. If any node is blocked, the entire path is blocked
- 3. If all nodes are open, then entire path is open

How to check if a node is open or blocked given a conditioning set:

- ► If non-collider:
 - ► Open if it is not in the conditioning set
 - ► Blocked if it is in the conditioning set
- ► If collider:
 - ▶ Open if it or any of its descendants are in the conditioning set
 - Otherwise it is blocked

- ▶ What are the paths from *A* to *Y*?
- ▶ Determine if each of the paths is causal or non-causal
- ► Determine whether each node on each path is a collider or non-collider

$$A \to \underbrace{Z}_{NG} \to Y$$

$$A \leftarrow \underbrace{H}_{NG} \rightarrow Y$$

non-causal

$$\blacktriangleright A \to \underbrace{Z}_{\mathsf{NC}} \to Y$$

causal path

$$A \leftarrow \underbrace{H}_{YZ} \rightarrow Y$$

non-causal

$$A \to \underbrace{Z}_{Col} \leftarrow \underbrace{H}_{NC} \to Y$$

non-causal

►
$$A \rightarrow \underbrace{Z}_{NC} \rightarrow Y$$

► $A \leftarrow \underbrace{H}_{NC} \rightarrow Y$

► $A \rightarrow \underbrace{Z}_{Col} \leftarrow \underbrace{H}_{NC} \rightarrow Y$

► $A \leftarrow \underbrace{H}_{NC} \rightarrow Z \rightarrow Y$

causal path

non-causal

non-causal

non-causal

7/19

If we condition on $L = \emptyset$, which paths are open? Which paths are blocked?

$$\blacktriangleright A \to \underbrace{Z}_{NC} \to Y$$

$$\blacktriangleright A \leftarrow \underbrace{H}_{\mathsf{NC}} \to Y$$

$$A \to \underbrace{Z}_{Col} \leftarrow \underbrace{H}_{NC} \to Y$$

$$A \leftarrow \underbrace{H}_{NC} \rightarrow \underbrace{Z}_{NC} \rightarrow Y$$

If we condition on $L=\emptyset$, which paths are open? Which paths are blocked?

$$\blacktriangleright A \to \underbrace{Z}_{NC} \to Y$$

Open

$$\blacktriangleright A \leftarrow \underbrace{H}_{NC} \rightarrow Y$$

$$A \to \underbrace{Z}_{Col} \leftarrow \underbrace{H}_{NC} \to Y$$

$$\blacktriangleright A \leftarrow \underbrace{H}_{NC} \rightarrow \underbrace{Z}_{NC} \rightarrow Y$$

If we condition on $L = \emptyset$, which paths are open? Which paths are blocked?

$$\blacktriangleright A \to \underbrace{Z}_{\mathsf{NC}} \to Y$$

Open

$$\blacktriangleright \ \ A \leftarrow \underbrace{H}_{NC} \rightarrow Y$$

Open

$$\blacktriangleright A \to \underbrace{Z}_{Col} \leftarrow \underbrace{H}_{NC} \to Y$$

$$\blacktriangleright A \leftarrow \underbrace{H}_{NC} \rightarrow \underbrace{Z}_{NC} \rightarrow Y$$

If we condition on $L = \emptyset$, which paths are open? Which paths are blocked?

$$\blacktriangleright A \to \underbrace{Z}_{\mathsf{NC}} \to Y$$

Open

$$\blacktriangleright \ A \leftarrow \underbrace{H}_{NC} \rightarrow Y$$

Open

$$A \to \underbrace{Z}_{\mathsf{Col}} \leftarrow \underbrace{H}_{\mathsf{NC}} \to Y$$

Blocked

$$A \leftarrow \underbrace{H}_{NC} \rightarrow \underbrace{Z}_{NC} \rightarrow Y$$

8 / 19

If we condition on $L = \emptyset$, which paths are open? Which paths are blocked?

$$\blacktriangleright A \to \underbrace{Z}_{\mathsf{NC}} \to Y$$

Open

$$\blacktriangleright A \leftarrow \underbrace{H}_{\mathsf{NC}} \to Y$$

Open

$$A \to \underbrace{Z}_{Col} \leftarrow \underbrace{H}_{NC} \to Y$$

Blocked

$$A \leftarrow \underbrace{H}_{NC} \rightarrow \underbrace{Z}_{NC} \rightarrow Y$$

Open

If we condition on $L = \{Z\}$, which paths are open? Which paths are blocked?

$$\blacktriangleright A \to \underbrace{Z} \to Y$$

$$\blacktriangleright A \leftarrow \underbrace{H}_{\mathsf{NC}} \to Y$$

$$A \to \underbrace{Z}_{Col} \leftarrow \underbrace{H}_{NC} \to Y$$

$$\blacktriangleright A \leftarrow \underbrace{H}_{NC} \rightarrow \underbrace{Z}_{NC} \rightarrow Y$$

If we condition on $L = \{Z\}$, which paths are open? Which paths are blocked?

$$\blacktriangleright A \to \underbrace{Z} \to Y$$

Blocked

$$\blacktriangleright A \leftarrow \underbrace{H}_{NC} \rightarrow Y$$

$$\bullet A \to \underbrace{Z}_{Col} \leftarrow \underbrace{H}_{NC} \to Y$$

$$A \leftarrow \underbrace{H}_{NC} \rightarrow \underbrace{Z}_{NC} \rightarrow Y$$

If we condition on $L = \{Z\}$, which paths are open? Which paths are blocked?

$$\blacktriangleright A \to \underbrace{Z}_{NC} \to Y$$

Blocked

$$\blacktriangleright \ \ A \leftarrow \underbrace{H}_{\mathsf{NC}} \to Y$$

Open

$$\blacktriangleright A \to \underbrace{Z}_{Col} \leftarrow \underbrace{H}_{NC} \to Y$$

$$\blacktriangleright A \leftarrow \underbrace{H}_{NC} \rightarrow \underbrace{Z}_{NC} \rightarrow Y$$

If we condition on $L = \{Z\}$, which paths are open? Which paths are blocked?

$$\blacktriangleright A \to \underbrace{Z}_{NC} \to Y$$

$$\blacktriangleright A \leftarrow \underbrace{H}_{\mathsf{NC}} \to Y$$

$$A \to \underbrace{Z}_{Col} \leftarrow \underbrace{H}_{NC} \to Y$$

$$\blacktriangleright A \leftarrow \underbrace{H}_{NC} \rightarrow \underbrace{Z}_{NC} \rightarrow Y$$

If we condition on $L = \{Z\}$, which paths are open? Which paths are blocked?

$$\blacktriangleright A \to \underbrace{Z}_{\mathsf{NC}} \to Y$$

Blocked

$$A \leftarrow \underbrace{H}_{\mathsf{NC}} \to Y$$

Open

$$\blacktriangleright A \to \underbrace{Z}_{Col} \leftarrow \underbrace{H}_{NC} \to Y$$

Open

$$A \leftarrow \underbrace{H}_{NC} \rightarrow \underbrace{Z}_{NC} \rightarrow Y$$

Blocked

- ► So far, we have assumed the DAG is known from expert knowledge
- ▶ DAG tells us about conditional independence we would observe in data

DAG ⇒ Conditional independence in data

- ► So far, we have assumed the DAG is known from expert knowledge
- DAG tells us about conditional independence we would observe in data

DAG ⇒ Conditional independence in data

- Conditional independence is a observational quantity (i.e., not causal)
- ► Can be tested in observed data
- ► Can we go in the opposite direction?

Conditional independence in data $\stackrel{?}{\Rightarrow}$ DAG

Can we tell which nodes are/aren't connected by an edge?

$$X \xrightarrow{Y} Z$$

- \triangleright $X \perp Y?$
- \triangleright $X \perp \!\!\! \perp Z?$
- \triangleright $Z \perp \!\!\!\perp Y?$
- $\blacktriangleright X \perp Y \mid Z?$
- \triangleright $Y \perp \!\!\!\perp Z \mid X?$
- $\blacktriangleright X \perp Z \mid Y?$

$$X \longrightarrow Y \longrightarrow 7$$

- \triangleright $X \perp Y?$
- $\blacktriangleright X \perp \!\!\! \perp Z?$
- \triangleright $Z \perp \!\!\!\perp Y?$
- $\blacktriangleright X \perp Y \mid Z?$
- $ightharpoonup Y \perp\!\!\!\perp Z \mid X?$
- $\blacktriangleright X \perp Z \mid Y?$

$$X \xrightarrow{Y} Z$$

- $\triangleright X \perp Y$? No
- \triangleright $X \perp Z$? No
- \triangleright $Z \perp Y$? No
- \triangleright $X \perp Y \mid Z$? No
- $ightharpoonup Y \perp\!\!\!\perp Z \mid X$? No
- \triangleright $X \perp Z \mid Y$? No

$$X \longrightarrow Y \longrightarrow Z$$

- \triangleright $X \perp Y$? No
- \triangleright $X \perp Z$? No
- \triangleright $Z \perp Y$? No
- ► X | V | 72 No
- $\triangleright X \perp Y \mid Z?$ No
- $ightharpoonup Y \perp \!\!\! \perp Z \mid X$? No
- $ightharpoonup X \perp\!\!\!\perp Z \mid Y$? Yes

$$X \xrightarrow{Y} Z$$

- $\triangleright X \perp Y$? No
- \triangleright $X \perp Z$? No
- \triangleright $Z \perp Y$? No
- \triangleright $X \perp Y \mid Z$? No
- $\triangleright Y \perp Z \mid X?$ No
- $\triangleright X \perp Z \mid Y$? No

$$X \longrightarrow Y \longrightarrow Z$$

- \triangleright $X \perp Y$? No
- \triangleright $X \perp Z$? No
- \triangleright $Z \perp Y$? No
- \triangleright $X \perp Y \mid Z$? No
- \triangleright $Y \perp Z \mid X$? No
- $\blacktriangleright X \perp Z \mid Y$? Yes

If there is an edge between two nodes, they cannot be made conditionally independent!

- ► Start with (undirected) edges between every pair of nodes
- ▶ If you can find a set L such that $X \perp L Y \mid L$, take away the edge between X and Y

- ► Start with (undirected) edges between every pair of nodes
- ▶ If you can find a set L such that $X \perp L Y \mid L$, take away the edge between X and Y

Allows us to find where the edges are, but not necessarily direction

- ► Start with (undirected) edges between every pair of nodes
- ▶ If you can find a set L such that $X \perp L Y \mid L$, take away the edge between X and Y

Allows us to find where the edges are, but not necessarily direction

A skeleton is the DAG where we have made all edges undirected

 $\mathsf{DAG}:X\to Y\to Z$

Skeleton : X - Y - Z

Can we also tell which direction an edge points?

$$X \longrightarrow Y \longrightarrow Z$$

- \triangleright $X \perp Y$? No
- \triangleright $X \perp Z$? No
- \triangleright $Z \perp Y$? No
- \triangleright $X \perp \!\!\!\perp Y \mid Z$? No
- \triangleright $Y \perp Z \mid X$? No
- $\blacktriangleright X \perp Z \mid Y$? Yes

$X \longrightarrow Y \longleftarrow Z$

- $\blacktriangleright X \perp Y?$
- $\blacktriangleright X \perp \!\!\! \perp Z?$
- \triangleright $Z \perp \!\!\!\perp Y?$
- \triangleright $X \perp \!\!\!\perp Y \mid Z?$
- $ightharpoonup Y \perp\!\!\!\perp Z \mid X?$
- \triangleright $X \perp Z \mid Y?$

$$X \longrightarrow Y \longrightarrow Z$$

$$X \longrightarrow Y \longleftarrow Z$$

- \triangleright $X \perp Y$? No
- \triangleright $X \perp Z$? No
- \triangleright $Z \perp Y$? No
- \triangleright $X \perp \!\!\!\perp Y \mid Z$? No
- \triangleright $Y \perp Z \mid X$? No
- $\blacktriangleright X \perp Z \mid Y$? Yes

- ► *X* ⊥ *Y*? No
- $\blacktriangleright X \perp Z$? Yes
- \triangleright $Z \perp Y$? No
- \triangleright $X \perp Y \mid Z$? No
- $ightharpoonup Y \perp \!\!\! \perp Z \mid X$? No
- \triangleright $X \perp Z \mid Y$? No

Colliders can sometimes tell us the direction of an edge

- ▶ Suppose we have X Y Z and no edge between X and Z
- ▶ Suppose $X \not\perp\!\!\!\perp Y \mid L$ for some set L that does not contain Y

- ▶ Suppose we have X Y Z and no edge between X and Z
- ▶ Suppose $X \not\perp \!\!\! \perp Y \mid L$ for some set L that does not contain Y
- ▶ Then, $X \rightarrow Y \leftarrow Z$

- ▶ Suppose we have X Y Z and no edge between X and Z
- ▶ Suppose $X \not\perp \!\!\! \perp Y \mid L$ for some set L that does not contain Y
- ▶ Then, $X \rightarrow Y \leftarrow Z$
- ▶ Unshielded collider: $X \rightarrow Y \leftarrow Z$ and X and Z do not have an edge

How far can we go? Can we fully determine the graph from data?

$$X \longrightarrow Y \longrightarrow Z$$

- \triangleright $X \perp Y$? No
- \triangleright $X \perp Z$? No
- \triangleright Z \perp Y? No
- \triangleright $X \perp Y \mid Z$? No
- \triangleright $Y \perp Z \mid X$? No
- $ightharpoonup X \perp\!\!\!\perp Z \mid Y$? Yes

- \triangleright $X \perp \!\!\!\perp Y?$
- \triangleright $X \perp \!\!\! \perp Z?$
- $ightharpoonup Z \perp\!\!\!\perp Y?$
- $\blacktriangleright X \perp \!\!\!\perp Y \mid Z?$
- \triangleright $Y \perp \!\!\!\perp Z \mid X?$
- $\blacktriangleright X \perp Z \mid Y?$

$$X \longrightarrow Y \longrightarrow Z$$

- \triangleright $X \perp Y$? No
- \triangleright $X \perp Z$? No
- \triangleright $Z \perp Y$? No
- \triangleright $X \perp Y \mid Z$? No
- $ightharpoonup Y \perp Z \mid X?$ No
- $\blacktriangleright X \perp Z \mid Y$? Yes

$$X \longleftarrow Y \longleftarrow Z$$

- \triangleright $X \perp Y$? No
- ► X ⊥ Z? No
- \triangleright $Z \perp Y$? No
- \triangleright $X \perp Y \mid Z$? No
- $\triangleright Y \perp Z \mid X?$ No
- $ightharpoonup X \perp\!\!\!\perp Z \mid Y$? Yes

Some graphs have the exact same set of conditional independence statements and cannot be distinguished from data alone!

Graphs have the same conditional independence statements if

- ► Same skeleton: edges in the same location, but possibly different direction (from Rule 1)
- ▶ Same unshielded colliders: $X \to Y \leftarrow Z$ and X and Z do not share an edge (from Rule 2)