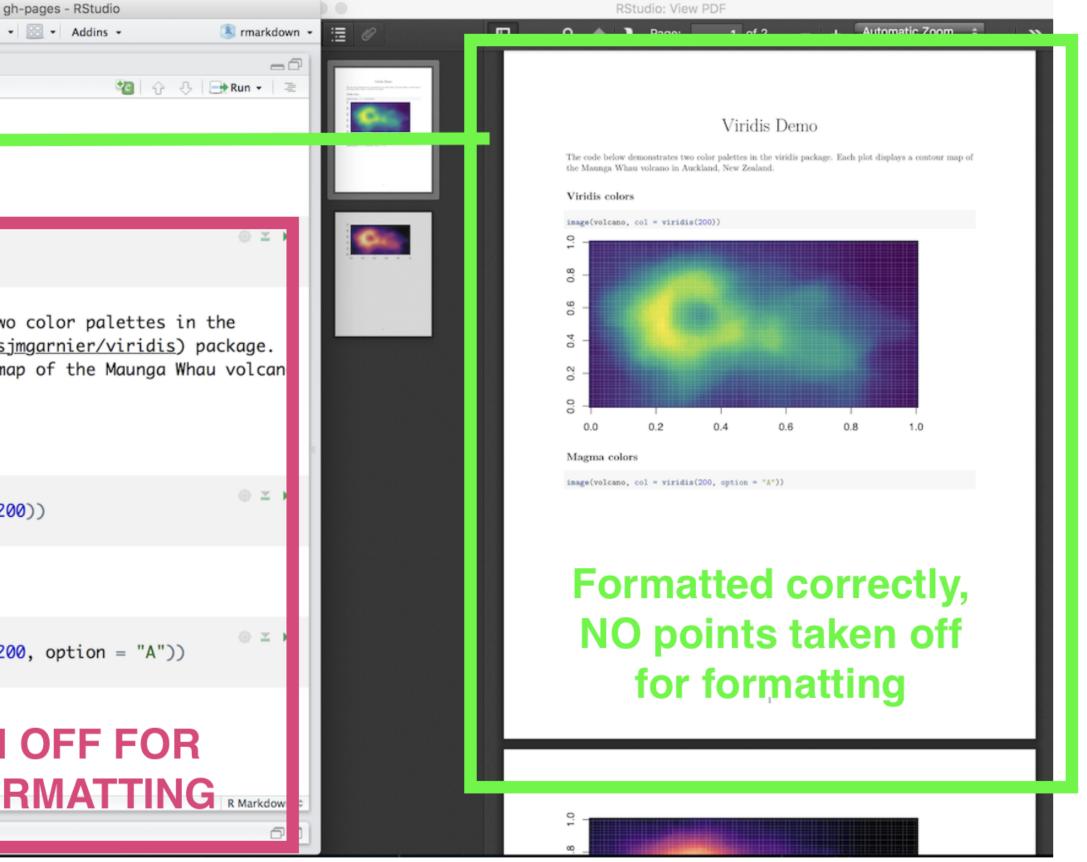
Exchangeability and Consistency STSCI/INFO/ILRST 3900: Causal Inference

September 18, 2024


Agenda

- Reminders and Announcements
- Class activity
- Homework Check-in and Questions

Reminders and Announcements

- HW 2 due Tuesday (September 24) by 5pm
- Submit the PDF file

•••	~/Documents/rmarkdown - gh
9 . • 🕤	🖹 🔸 🚍 🛛 🚔 🛛 🏕 Go to file/function 🔤 🕴 👼 🔹
🕥 1-ex	ample.Rmd ×
$\langle \phi \phi \rangle$	л 🕞 🖓 💁 🐋 Knit 🗸 🛞 🗸
1-	- 💽 Knit to HTML
2	t 🔁 Knit to PDF
3	O 🗹 Knit to Word
4	- Knit with Parameters
5	
7	library(viridis)
8	
9	
10	The code below demonstrates two
	[viridis](https://github.com/sj
	Each plot displays a contour ma
	in Auckland, New Zealand.
11	
	## Viridis colors
13	
	```{r}
15 16	<pre>image(volcano, col = viridis(20)</pre>
17	
	## Magma colors
19	
20-	```{r}
21	<pre>image(volcano, col = viridis(20)</pre>
22	
23	
	DOINTS TAKEN
	POINTS TAKEN
	NCORRECT FOF
4:4	
Consol	e



# **Reminders and Announcements**

- Office Hours
  - Filippo: Monday 11am-12pm in Comstock 1187
  - Shira: Wednesday 5:30-6:30pm in in Comstock 1187
  - See Ed Discussion for Zoom links/info

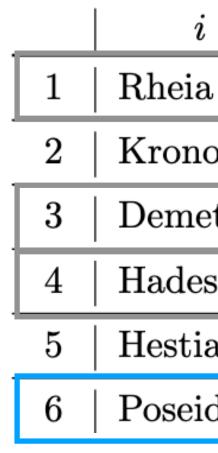
# **Consistency and Exchangeability**

- Consistency- the observed outcome equals the potential outcome that corresponds to the given treatment
  - $Y_i = \begin{cases} Y_i^a \\ Y_i^a \\ Y_i^a \end{cases}$
- Exchangeability- the treatment as outcomes
  - $P(Y^a = 1 | A =$

$$_{i}^{a=1} \quad A_{i} = 1$$

$$a=0 \quad A_i = 0$$

Exchangeability- the treatment assignment is independent of the potential


$$1) = P(Y^a = 1 | A = 0)$$

## **Class Activity**

- 1. Fill in the blanks such that **exchangeability** holds
- 2. Fill in the observed outcome (Y) such that **consistency** holds
- 3. Calculate the quantities at the bottom (without simplifying)

<u>Note:</u>

 $E[Y^{a=1}] \stackrel{\text{exchangeabili}}{=}$ 



For example: 
$$E[Y^{a=0}] = 1 \times P(Y^{a=0} = 1) + 0 \times P(Y^{a=0} = 0)$$
  
 $E[Y^{a=0} | A = 0] = \dots = \begin{cases} \frac{1}{3} & \text{if } A_6 = 1\\ \frac{1+1}{3+1} & \text{if } A_6 = 0 \end{cases}$ 

^{lity} 
$$E[Y^{a=1}|A=1] \stackrel{\text{consistency}}{=} E[Y|A=1]$$

,	$Y^{a=0}$	$Y^{a=1}$	$\mid A$	Y
ı	0	1	0	
os	1	0	1	
eter	0	0	0	
s	1	0	0	
a	0	0	1	
don	1	0		
$) = \frac{3}{6}$				

* This data is slightly different than the one in the assignment where N = 20

#### **Class Activity Quantities to calculate**

- $E[Y^{a=0}]$  the expected value of the **potential** outcome under no treatment
- under no treatment within the control group)
- group)

•  $E[Y^{a=0}|A=0]$  - the expected value of the **potential** outcome under no treatment conditioned on the control group (i.e. the expected value of the potential outcome

• E[Y|A = 0] - the expected value of the **observed** outcome conditioned on the control group (i.e. the expected value of the observed outcome within the control



	i	$Y^{a=0}$	$Y^{a=1}$	A
1	Rheia	0	1	0
2	Kronos	1	0	1
3	Demeter	0	0	0
4	Hades	0	0	0
5	Hestia	0	0	1
6	Poseidon	1	0	0
7	Hera	0	0	1
8	Zeus	0	1	1
9	Artemis	1	1	0
10	Apollo	1	0	0

Y

 $E[Y^{a=0}] = 1 \times P(Y^{a=0} = 1) + 0 \times$ 

	11   Leto	0	1
	12   Ares	1	1
	13   Athena	1	$1 \mid 0 \mid$
	14   Hephaestus	0	0   1
-	15   Aphrodite	0	0   1
	16   Polyphemus	0	1   1
•	17   Persephone	1	1   1
•	18   Hermes	1	0   1
•	19   Hebe	1	$1 \mid 1 \mid$
•	20   Dionysus	1	1   1

$$\times P(Y^{a=0} = 0) = 1 \times \frac{10}{20} + 0 \times \frac{10}{20} = \frac{10}{20}$$

	i	$Y^{a=0}$	$Y^{a=1}$	A	Y
1	Rheia	0	1	0	
2	Kronos	1	0	1	
3	Demeter	0	0	0	
4	Hades	0	0	0	
5	Hestia	0	0	1	
6	Poseidon	1	0	0	
7	Hera	0	0	1	
8	Zeus	0	1	1	
9	Artemis	1	1	0	
10	Apollo	1	0	0	

11	Leto	0	1	
12	Ares	1	1	
13	Athena	1	1	0
14	Hephaestus	0	0	1
15	Aphrodite	0	0	$\mid 1 \mid$
16	Polyphemus	0	1	$\mid 1 \mid$
17	Persephone	1	1	$\mid 1 \mid$
18	Hermes	1	0	1
19	Hebe	1	1	$\mid 1 \mid$
20	Dionysus	1	1	1

Ignoring the missing entries,

 $E[Y^{a=0}]$ 

$$P[A = 0] = \frac{P(Y^{a=0} = 1 \text{ and } A = 0)}{P(A = 0)} = \frac{4}{7}$$

• For each value of  $A_{11}$  and  $A_{12}$  recalculate  $E[Y^{a=0} | A = 0]$ 

$$E[Y^{a=0} | A = 0] = \begin{cases} \frac{4}{7} & \text{if } A_{11} = 1 \text{ and} \\ \frac{4}{8} & \text{if } A_{11} = 0 \text{ and} \\ \frac{5}{8} & \text{if } A_{11} = 1 \text{ and} \\ \frac{5}{9} & \text{if } A_{11} = 0 \text{ and} \end{cases}$$

• For exchangeability to hold we want  $E[Y^{a=0}] = E[Y^{a=0} | A = 0]$  then:

• 
$$A_{11} = 0$$
 and  $A_{12} = 1$ 

- $A_{12} = 1$  $A_{12} = 1$
- $A_{12} = 0$
- $A_{12} = 0$

	i	$Y^{a=0}$	$Y^{a=1}$	A	Y
1	Rheia	0	1	0	0
2	Kronos	1	0	1	0
3	Demeter	0	0	0	
4	Hades	0	0	0	
5	Hestia	0	0	1	
6	Poseidon	1	0	0	
7	Hera	0	0	1	
8	Zeus	0	1	1	
9	Artemis	1	1	0	
10	Apollo	1	0	0	

11	Leto	0	1	0
12	Ares	1	1	1
13	Athena	1	1	0
14	Hephaestus	0	0	$\mid 1 \mid$
15	Aphrodite	0	0	$\mid 1 \mid$
16	Polyphemus	0	1	$\mid 1 \mid$
17	Persephone	1	1	$\mid 1 \mid$
18	Hermes	1	0	1
19	Hebe	1	1	1
20	Dionysus	1	1	$\mid 1 \mid$

Fill in the **observed** outcome such that:

$$Y_{i} = \begin{cases} Y_{i}^{a=1} & A_{i} = 1 \\ Y_{i}^{a=0} & A_{i} = 0 \end{cases}$$

For example:  $A_1 = 0$  then  $Y_1 = Y_1^{a=0} = 0$  $A_2 = 1$  then  $Y_2 = Y_2^{a=1} = 0$ 

	i	$Y^{a=0}$	$Y^{a=1}$	$\mid A$	Y
1	Rheia	0	1	0	0
2	Kronos	1	0	$\mid 1$	0
3	Demeter	0	0	0	0
4	Hades	0	0	0	0
5	Hestia	0	0	1	0
6	Poseidon	1	0	0	1
7	Hera	0	0	$\mid 1$	0
8	Zeus	0	1	1	1
9	Artemis	1	1	0	1
10	Apollo	1	0	0	1

 $E[Y|A = 0] = \frac{0+0+0+1+1+1+0+1}{0} = \frac{4}{0}$ 

11	Leto	0	1 $ $	0	0
12	Ares	1	1	1	1
13	Athena	1	1 $ $	0	1
14	Hephaestus	0	0	1	0
15	Aphrodite	0	0	1	0
16	Polyphemus	0	$\mid 1 \mid$	1	1
17	Persephone	1	$\mid 1 \mid$	1	1
18	Hermes	1	0	1	0
19	Hebe	1	1 $ $	1	1
20	Dionysus	1	1	1	1

# **Class Activity**

• Repeat for A = 1 to obtain: •  $E[Y^{a=1}] = \frac{10}{20}$ •  $E[Y^{a=1} | A = 1] = \frac{6}{12}$ •  $E[Y|A = 1] = \frac{6}{12}$ 





# Questions about the HW?