Prob & Stats Review STSCI/INFO/ILRST 3900: Causal Inference

August 30, 2023

Reminders and Announcements

- HW 1 due tomorrow (August 31) by 5pm
 - Submit a PDF from RMarkdown via Canvas
- Office Hours throughout the week (see Syllabus or website)
 - Mayleen: Fridays 9-10am in Rhodes 657 (Room 2) or Zoom
 - Daniel: Thursdays 1-2pm in Uris 302
 - See Ed Discussion for Zoom links/info

Agenda for Today

- Reminders and Announcements
- Quick Icebreaker
- Probability and Statistics Review
- Homework Check-in and Questions

Icebreaker Rock-Paper-Scissors Stats Review

- Introduce yourself to the person next to you and play rock-paper-scissors with them, best 2 out of 3
- The person who wins explains to the other person picks one of the topics listed below and explains what they understand about it.
 - Expectation, Variance, Conditional Expectation, Independence, Bernoulli
- The person who lost needs to come up with one follow-up question, and both
 of you can work together to determine the answer.

Probability and Statistics Review

- Expectation
- Variance
- Conditional Expectation
- Independence
- Bernoulli random variables

Expectation (Expected Value, Population Mean, Average)

- Notation: $E(X), \mu$
- The **expected value** of a *finite* random variable

$$\mu = E(X) := \sum_{i=1}^{N} x_i \cdot P(x_i) \text{ where } P(x_i) := \operatorname{Prob}(X = x_i)$$

• Can also think of it as a population average; $X = \{x_1, \dots, x_n\}$

 $E(X) = \frac{1}{N} \sum_{i=1}^{N} x_i$ l=1

Expectation (Expected Value, Population Mean, Average)

• The expected value of a *countable* random variable, i.e. the (long run) average

E(X) =

• For *n* independent and identically distributed (i.i.d.) random variables X_1, \dots, X_N

the sample m

- \bullet mean) as $N \to \infty$
- Example: R (compute the sample mean for larger and larger N)

$$\sum_{i=1}^{\infty} x_i \cdot P(x_i)$$

ean is
$$\bar{X} = \frac{1}{N} \sum_{i=1}^{N} X_i$$

Law of Large Numbers (LLN): the sample mean converges to the expected value (population

Expectation

- How quickly does the sample mean converge to the population mean?

• X_i are random draws from ~ $\mathcal{N}(2,5)$ (a Normal r.v. with mean 2, variance 5)

	THE REPORTS IN FRANCE	Reference and	المحتا بالم	
			<u>11.11.12.12.1.21.1.12.1.11.11.1.11.11</u> .1.1	
And the second second	ind the community of a second	to a solid a second stabilities a second	a harden die andere harden die andere	

Variance **Describes the spread of the data**

- Notation: V(X), Var(X), σ^2
- Variance is the average of the squared differences from the mean
- For a random variable X with expected value $\mu := E(X)$, the variance is

$$\sigma^2 = Var(X) := E$$

i = 1

 $\left| \left(X - \mu \right)^2 \right| = E[X^2] - \mu^2$ More explicitly, $Var(X) = \sum P(x_i) \cdot (x_i - \mu)^2$ where $P(x_i) := Prob(X = x_i)$

Sample (Empirical) Variance For a finite dataset or finite sample

• In practice, you can compute the variance of a finite dataset as

$$\sigma^2 = \left(\frac{1}{N}\sum_{i=1}^N x_i^2\right) - \bar{X}$$

- You don't need to have the formula memorized, just be aware of it

$$\bar{X}^2$$
 where $\bar{X} := \frac{1}{N} \sum_{i=1}^N x_i$

Likely you'll never have to explicitly compute it this way, just use an R function

Sample Variance

• X_i are random draws from ~ $\mathcal{N}(2,5)$ (a Normal r.v. with mean 2, variance 5)

How quickly does the sample variance converge to the population variance?

	يقرون أبلير الفاطنين بتناتي ومالج ومحد	والمحادثة والمراجع والمراجع والمحادثة والمحادثة والمحادثة والمحادثة والمحادثة والمحادثة والمحادثة والمحادثة وال	a de lift in , a des a seles statution a com	
فأراد الترجيح والمتحد والمتحد		The second of the second se		
		1.		
	00	00		00
	20	00	300	00
Γ	N			

Conditional Expectation

- Notation: $E(X \mid Y)$
- The expected value given a set of "conditions"
- Read as "the expectation of X given (or conditioned on) Y"
 - $E(X \mid Y) = \sum_{i=1}^{N}$
 - where $P(X = x_i)$

$$\sum_{i=1}^{n} x_i \cdot P(X = x_i | Y)$$

$$= 1$$

$$Y) = \frac{P(X = x_i \text{ and } Y)}{P(Y)}$$

Conditional Expectation Example: Roll a fair die

- Let A = 1 if you roll an even number, 0 otherwise.
- Let B = 1 if you roll a prime number, 0 otherwise. Then,

$$E[A] = \sum_{i=1}^{6} a_i \cdot P(a_i) = \frac{0+1+0+1+0+1}{6} = \frac{1}{2}$$

$$E[A | B = 1] = \sum_{i=1}^{3} a_i \cdot P(a_i | B = 1) = \frac{1+0+0}{3} = \frac{1}{3}$$

and the conditional expectation of A given B = 1 (i.e. we rolled 2, 3, or 5)

Conditional Expectation - Visualized

E[X] = 25E[X | group 1] = 20E[X | group 2] = 30

Group

- Group 1
- Group 2

Independence

- Notation: \bot , $X \bot Y$
- Two random variables are independent if the outcome of one does not give any information about the outcome of the other
- Events A and B are independent if $P(A \cap B) = P(A)P(B)$
- Recall: $P(A \cap B) = P(A \mid B)P(B)$
- If $A \perp B$, then $P(A \mid B) = P(A)$ and $P(B \mid A) = P(B)$

Independence Example: Dice

- Suppose you roll two fair dice. Let A be the value of the first die and let B be the
 value of the second die.
- If I say that A = 3, does that give you any info about what the value of B is?
- We can show that the **events** $\{A = 3\}$ and $\{B = 3\}$ are independent: $P(\{A = 3\} \cap \{B = 3\}) = P(\{A = 3\} | \{B = 3\}) \cdot P(\{B = 3\})$ $= \frac{1}{6} \cdot \frac{1}{6}$ $= P(\{A = 3\}) \cdot P(\{B = 3\})$
- To show $A \perp B$, you would show this holds for all values of A and B

Independence **Example: Dice**

• If we simulate 100k dice rolls, we see that the joint probability of each combination is equal to the individual probabilities multiplied.

Independence of dice roll

Bernoulli Random Variables A binary/dichotomous random variable

- Notation: B(p), Bernoulli(p), $\mathscr{B}(p)$
- Let $X \sim B(p)$
 - "Let X be a Bernoulli random variable with mean p"
 - E(X) = p and Var(X) = p(1 p) = pq
- Cool fact: E(X) = P(X = 1) = p

• Takes the value 1 with probability (w.p.) p, and the value 0 w.p. q := 1 - p

Law of Total Expectation (i.e. law of iterated expectations, tower rule)

- Useful property (or "trick) that will be used in class
- Don't worry too much about the technical details, just add to your toolbox :)
- E(X) = E(E(X | Y))