Prob \& Stats Review

STSCI/INFO/ILRST 3900: Causal Inference

August 30, 2023

Reminders and Announcements

- HW 1 due tomorrow (August 31) by 5pm
- Submit a PDF from RMarkdown via Canvas
- Office Hours throughout the week (see Syllabus or website)
- Mayleen: Fridays 9-10am in Rhodes 657 (Room 2) or Zoom
- Daniel: Thursdays 1-2pm in Uris 302
- See Ed Discussion for Zoom links/info

Agenda for Today

- Reminders and Announcements
- Quick Icebreaker
- Probability and Statistics Review
- Homework Check-in and Questions

Icebreaker

Rock-Paper-Scissors Stats Review

- Introduce yourself to the person next to you and play rock-paper-scissors with them, best 2 out of 3
- The person who wins explains to the other person picks one of the topics listed below and explains what they understand about it.
- Expectation, Variance, Conditional Expectation, Independence, Bernoulli
- The person who lost needs to come up with one follow-up question, and both of you can work together to determine the answer.

Probability and Statistics Review

- Expectation
- Variance
- Conditional Expectation
- Independence
- Bernoulli random variables

Expectation

(Expected Value, Population Mean, Average)

- Notation: $E(X), \mu$
- The expected value of a finite random variable

$$
\mu=E(X):=\sum_{i=1}^{N} x_{i} \cdot P\left(x_{i}\right) \text { where } P\left(x_{i}\right):=\operatorname{Prob}\left(X=x_{i}\right)
$$

- Can also think of it as a population average; $X=\left\{x_{1}, \ldots, x_{n}\right\}$

$$
E(X)=\frac{1}{N} \sum_{i=1}^{N} x_{i}
$$

Expectation
 (Expected Value, Population Mean, Average)

- The expected value of a countable random variable, i.e. the (long run) average

$$
E(X)=\sum_{i=1}^{\infty} x_{i} \cdot P\left(x_{i}\right)
$$

- For n independent and identically distributed (i.i.i.d.) random variables X_{1}, \cdots, X_{N}

$$
\text { the sample mean is } \bar{X}=\frac{1}{N} \sum_{i=1}^{N} X_{i}
$$

- Law of Large Numbers (LLN): the sample mean converges to the expected value (population mean) as $N \rightarrow \infty$
- Example: R (compute the sample mean for larger and larger N)

Expectation

- X_{i} are random draws from $\sim \mathcal{N}(2,5)$ (a Normal r.v. with mean 2, variance 5)
- How quickly does the sample mean converge to the population mean?

Variance

Describes the spread of the data

- Notation: $V(X), \operatorname{Var}(X), \sigma^{2}$
- Variance is the average of the squared differences from the mean
- For a random variable X with expected value $\mu:=E(X)$, the variance is

$$
\sigma^{2}=\operatorname{Var}(X):=E\left[(X-\mu)^{2}\right]=E\left[X^{2}\right]-\mu^{2}
$$

More explicitly, $\operatorname{Var}(X)=\sum_{i=1}^{n} P\left(x_{i}\right) \cdot\left(x_{i}-\mu\right)^{2}$ where $P\left(x_{i}\right):=\operatorname{Prob}\left(X=x_{i}\right)$

Sample (Empirical) Variance

For a finite dataset or finite sample

- In practice, you can compute the variance of a finite dataset as

$$
\sigma^{2}=\left(\frac{1}{N} \sum_{i=1}^{N} x_{i}^{2}\right)-\bar{X}^{2} \text { where } \bar{X}:=\frac{1}{N} \sum_{i=1}^{N} x_{i}
$$

- You don't need to have the formula memorized, just be aware of it
- Likely you'll never have to explicitly compute it this way, just use an R function

Sample Variance

- X_{i} are random draws from $\sim \mathscr{N}(2,5)$ (a Normal r.v. with mean 2, variance 5)
- How quickly does the sample variance converge to the population variance?

Conditional Expectation

- Notation: $E(X \mid Y)$
- The expected value given a set of "conditions"
- Read as "the expectation of X given (or conditioned on) Y "

$$
\begin{gathered}
E(X \mid Y)=\sum_{i=1}^{n} x_{i} \cdot P\left(X=x_{i} \mid Y\right) \\
\text { where } P\left(X=x_{i} \mid Y\right)=\frac{P\left(X=x_{i} \text { and } Y\right)}{P(Y)}
\end{gathered}
$$

Conditional Expectation

Example: Roll a fair die

- Let $A=1$ if you roll an even number, 0 otherwise.
- Let $B=1$ if you roll a prime number, 0 otherwise. Then,

$$
E[A]=\sum_{i=1}^{6} a_{i} \cdot P\left(a_{i}\right)=\frac{0+1+0+1+0+1}{6}=\frac{1}{2}
$$

and the conditional expectation of A given $B=1$ (i.e. we rolled 2,3 , or 5)

$$
E[A \mid B=1]=\sum_{i=1}^{3} a_{i} \cdot P\left(a_{i} \mid B=1\right)=\frac{1+0+0}{3}=\frac{1}{3}
$$

Conditional Expectation - Visualized

Independence

- Notation: $\perp, X \perp Y$
- Two random variables are independent if the outcome of one does not give any information about the outcome of the other
- Events A and B are independent if $P(A \cap B)=P(A) P(B)$
- Recall: $P(A \cap B)=P(A \mid B) P(B)$
- If $A \perp B$, then $P(A \mid B)=P(A)$ and $P(B \mid A)=P(B)$

Independence

Example: Dice

- Suppose you roll two fair dice. Let A be the value of the first die and let B be the value of the second die.
- If I say that $A=3$, does that give you any info about what the value of B is?
- We can show that the events $\{A=3\}$ and $\{B=3\}$ are independent:

$$
\begin{aligned}
P(\{A=3\} \cap\{B=3\}) & =P(\{A=3\} \mid\{B=3\}) \cdot P(\{B=3\}) \\
& =\frac{1}{6} \cdot \frac{1}{6} \\
& =P(\{A=3\}) \cdot P(\{B=3\})
\end{aligned}
$$

- To show $A \perp B$, you would show this holds for all values of A and B

Independence

Example: Dice

- If we simulate 100k dice rolls, we see that the joint probability of each combination is equal to the individual probabilities multiplied.

Bernoulli Random Variables

A binary/dichotomous random variable

- Notation: $B(p)$, Bernoulli $(p), \mathscr{B}(p)$
- Takes the value 1 with probability (w.p.) p, and the value 0 w.p. $q:=1-p$
- Let $X \sim B(p)$
- "Let X be a Bernoulli random variable with mean p "
- $E(X)=p$ and $\operatorname{Var}(X)=p(1-p)=p q$
- Cool fact: $E(X)=P(X=1)=p$

Law of Total Expectation
 (i.e. law of iterated expectations, tower rule)

- Useful property (or "trick) that will be used in class

$$
E(X)=E(E(X \mid Y))
$$

- Don't worry too much about the technical details, just add to your toolbox :)

