September 4, 2024

Prob & Stats Review STSCI/INFO/ILRST 3900: Causal Inference

Agenda for Today

- Reminders and Announcements
- Probability and Statistics Review
- R/RStudio Intro
- Homework Check-in and Questions

Reminders and Announcements

- HW 1 due Tuesday (September 10) by 5pm
	- Submit a PDF from RMarkdown via Canvas
- Office Hours throughout the week (see Syllabus or website)
	- Filippo: Monday 11am-12pm in Comstock 1187
	- Shira: Wednesday 3-4pm in in Comstock 1187
	- See Ed Discussion for Zoom links/info

Probability and Statistics Review

- Expectation
- Variance
- Conditional Expectation
- Independence
- Bernoulli Random Variables
- Law of Total Expectation
- Confidence Intervals
- Regression (OLS, logistic)

Expectation (Expected Value, Population Mean, Average)

- Notation: $E(X)$, μ
- The **expected value** of a *finite* random variable

$$
\mu = E(X) := \sum_{i=1}^{N} x_i \cdot P(x_i)
$$

) where $P(x_i) := \text{Prob}(X = x_i)$

Expectation (Expected Value, Population Mean, Average)

• The **expected value** of a *countable* random variable, i.e. the (long run) average

 $E(X) =$

• For n independent and identically distributed (i.i.d.) random variables X_1, \cdots, X_N

the **sample** mean

- mean) as $N\to\infty$
- Example: R (compute the sample mean for larger and larger N)

• **Law of Large Numbers (LLN)**: the sample mean converges to the expected value (population

$$
\sum_{i=1}^{\infty} x_i \cdot P(x_i)
$$

$$
anh is \bar{X} = \frac{1}{N} \sum_{i=1}^{N} X_i
$$

Expectation

-
- How quickly does the sample mean converge to the population mean?

• X_i are random draws from $\sim \mathcal{N}(2,5)$ (a Normal r.v. with mean 2, variance 5)

Variance Describes the spread of the data

- Notation: $V(X)$, $Var(X)$, σ^2
- Variance is the average of the squared differences from the mean
-

$$
\sigma^2 = Var(X) := E
$$

More explicitly, $Var(X) = \sum P(x_i) \cdot (x_i - \mu)^2$ where ∑

• For a random variable X with expected value $\mu := E(X)$, the variance is $\sigma^2 = Var(X) := E|(X - \mu)^2| = E[X^2] - \mu^2$ $P(x_i) \cdot (x_i - \mu)^2$ where $P(x_i) := \text{Prob}(X = x_i)$

n

i=1

Sample (Empirical) Variance For a finite dataset or finite sample

• In practice, you can compute the variance of a finite dataset as

- You don't need to have the formula memorized, just be aware of it
-

$$
\bar{X}^2 \text{ where } \bar{X} := \frac{1}{N} \sum_{i=1}^N x_i
$$

• Likely you'll never have to explicitly compute it this way, just use an R function

$$
\sigma^2 = \left(\frac{1}{N} \sum_{i=1}^N x_i^2\right) - \bar{X}
$$

Sample Variance

-
-

• X_i are random draws from $\sim \mathcal{N}(2,5)$ (a Normal r.v. with mean 2, variance 5)

• How quickly does the sample variance converge to the population variance?

Conditional Expectation

- Notation: *E*(*X*|*Y*)
- The expected value given a set of "conditions"
- Read as "the expectation of X given (or conditioned on) Y "
	- $E(X|Y) =$
	- where $P(X = x_i | Y) =$

$$
\sum_{i=1}^{n} x_i \cdot P(X = x_i | Y)
$$

$$
|Y) = \frac{P(X = x_i \text{ and } Y)}{P(Y)}
$$

Conditional Expectation Example: Roll a fair dice

- Let $A = 1$ if you roll an even number, 0 otherwise.
- Let $B = 1$ if you roll a prime number, 0 otherwise. Then,

$$
E[A] = \sum_{i=1}^{6} a_i \cdot P(a_i) = \frac{0+1+0+1+0+1}{6} = \frac{1}{2}
$$

$$
E[A | B = 1] = \sum_{i=1}^{3} a_i \cdot P(a_i | B = 1) = \frac{1+0+0}{3} = \frac{1}{3}
$$

and the conditional expectation of A given $B=1$ (i.e. we rolled 2, 3, or 5)

Conditional Expectation - Visualized

$E[X] = 25$ $E[X]$ group 1] = 20 $E[X]$ group 2] = 30

Group

- Group 1
- Group 2

Independence

- Notation: ⊥ , *X* ⊥ *Y*
- Two random variables are **independent** if the outcome of one does not give any information about the outcome of the other
- Events A and B are independent if $P(A \cap B) = P(A)P(B)$
- Recall: $P(A \cap B) = P(A | B)P(B)$
- If $A \perp B$, then $P(A | B) = P(A)$ and $P(B | A) = P(B)$

Independence Example: Dice

- Suppose you roll two fair dice. Let A be the value of the first die and let B be the value of the second die.
- If I say that $A = 3$, does that give you any info about what the value of B is?
- We can show that the **events** $\{A = 3\}$ and $\{B = 3\}$ are independent: $P({A = 3} \cap {B = 3}) = P({A = 3} | {B = 3}) \cdot P({B = 3})$ = 1 6 **⋅** 1 6 $= P({ A = 3}) \cdot P({ B = 3})$
- To show $A \perp B$, you would show this holds for all values of A and B

Independence Example: Dice

• If we simulate 100k dice rolls, we see that the joint probability of each combination is equal to the individual probabilities multiplied.

Value Rolled

Bernoulli Random Variables A binary/dichotomous random variable

- Notation: *B*(*p*), Bernoulli(*p*), ℬ(*p*)
-
- Let *X* ∼ *B*(*p*)
	- "Let X be a Bernoulli random variable with mean p "
	- $E(X) = p$ and $Var(X) = p(1 p) = pq$
- Cool fact: $E(X) = P(X = 1) = p$

• Takes the value 1 with probability (w.p.) p , and the value 0 w.p. $q := 1 - p$

Law of Total Expectation (i.e. law of iterated expectations, tower rule)

- Useful property (or "trick) that will be used in class
	-
- Don't worry too much about the technical details, just add to your toolbox :)
- $E(X) = E(E(X|Y))$

Confidence Intervals

- A set of values that contains the real parameter with probability 1α
- Define $CI = [L, U]$ then $P(L \le \mu \le U) = 1 \alpha$
- Usually 1α is 95 % or 99 %
- *Example:* X_i are random draws from $\sim \mathcal{N}(2, 5)$
- Estimating expectation of a random variable using sample mean:

 $E(X) = \hat{\mu}$ ̂

$$
\leq U) = 1 - \alpha
$$

$$
1 \sim \mathcal{N}(2,5)
$$

$$
=\bar{X}=\frac{1}{N}\sum_{i=1}^{N}X_i
$$

Confidence Intervals

• \bar{X} is an estimate for μ with some uncertainty

$$
P(\mu \le \bar{X} - c) = P(\mu \ge \bar{X} + c) = \frac{\alpha}{2}
$$

• $Z_{\frac{\alpha}{2}}$ is the the critical value of the Normal distribution (For example in R: qnorm(0.025)) 2

$$
P\left(\frac{\bar{X} - \mu}{\sigma/\sqrt{N}} \leq \frac{\mu - c - \mu}{\sigma/\sqrt{N}}\right) \Rightarrow -c = Z_{\frac{\alpha}{2}}
$$

$$
\bullet \ \ CI = \bar{X} \pm Z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{N}}
$$

Regression

- Estimates the relationships between X and Y where
- *Y* the dependent variable, outcome/response
- *X*-independent variable, regressor/explanatory
- Main types of regression: Linear and Logistic

Regression Linear Regression

-
- α , β are the coefficients where α is the intercept and β the slope

• Assume data was generated: $Y_i = \alpha + \beta X_i + \varepsilon_i$ for $i = 1,...,N$

Regression Linear Regression

• Using ordinary least squares (OLS) to estimate

• Minimizes sum of squared errors: $(\hat{\alpha}, \beta) = \operatorname{argmin}_{a,b}$ ̂

e
$$
\hat{Y}_i = \hat{\alpha} + \hat{\beta}X_i
$$

gmin_{a,b} $\sum_{i=1}^N (Y_i - (a + bX_i))^2$

$$
\frac{\partial}{\partial a} SSE = \sum_{i=1}^{N} -2(Y_i - a - bX_i) \Rightarrow \hat{\alpha}
$$

$$
\frac{\partial}{\partial b} SSE = \sum_{i=1}^{N} -2(Y_i - (\bar{Y} - b\bar{X}) - bX_i)X_i = \sum_{i=1}^{N}
$$

$$
\hat{\alpha} = \bar{Y} - \hat{\beta}\bar{X}
$$

$$
= \sum_{i=1}^{N} -2\left[(Y_i - \bar{Y})X_i - b(X_i - \bar{X})X_i \right]
$$

$$
\Rightarrow \hat{\beta} = \frac{\sum_{i=1}^{N} (Y_i - \bar{Y})(X_i - \bar{X})}{\sum_{i=1}^{N} (X_i - \bar{X})^2}
$$

Regression Logistic Regression

- Y_i the outcome variable is binary for $i = 1,...,N$
- Use a link function to estimate $P(Y_i = 1) := p_i$ that satisfies $\mathbb{R} \to (0,1)$

Most common- logistic function: $\sigma(t) =$

- In a linear model we estimate $Y_i = \hat{\alpha} + \beta X$ ̂ ̂
- In logistic model we estimate $\hat{p}_i =$ $1 + e^{-(\hat{\alpha} + \beta X_i)}$

1 $1 + e^{-t}$ *i* 1

$$
\bullet \quad \alpha + \beta X_i = \ln\left(\frac{p_i}{1-p_i}\right)
$$

̂

Regression Logistic Regression

\n- Odds ratio:
$$
\frac{p_i}{1 - p_i} = \frac{P(Y_i = 1)}{P(Y_1 = 0)}
$$
\n- For example: $\frac{P(\text{Passing exam})}{P(\text{Not passing})} = \frac{3/4}{1/4}$ the odds ratio is 3 : 1
\n

• To estimate $\hat{\alpha}, \beta$ we use maximum likelihood estimates (MLE)

• Likelihood function: $L(a, b; y) =$ *N* ∏ *i*=1 $P(Y_i = y_i)$ *N*

• Log likelihood: $l(a, b; y) =$ ∑ $i=1$ $y_i \ln(p_i) + (1 - y_i)$

$$
= y_i) = \prod_{i=1}^{N} p_i^{y_i} (1 - p_i)^{(1 - y_i)}
$$

(1 - y_i)ln(1 - p_i) = $\sum_{i=1}^{N} \ln(1 - p_i) + y_i \ln\left(\frac{p_i}{1 - p_i}\right)$

Regression Logistic Regression

• Log likelihood: $l(a, b; y) =$ • To find MLE we solve *N* ∑ *i*=1 $\ln(1 - p_i) + y_i \ln \left($ ∂ ∂(*a*, *b*) $l(a, b; y) = 0$

No close form solution iterative method such as: gradient descent or Newton–Raphson

pi $\frac{1}{1-p_i} =$ *N* ∑ *i*=1 $-\ln(1 + e^{a + bX_i}) + y_i(a + bX_i)$

R

- R is an open-source programming language
- Used for statistical computing and creating plots
- Download and install R

<https://cran.r-project.org/>

RStudio

- RStudio is an open-source IDE (integrated development environment)
- Download and install RStudio (scroll down for earlier versions)

<https://posit.co/download/rstudio-desktop/>

RStudio

R RStudio File Edit Code View Plots Session Build Debug Profile Tools He O - OK - E E | A Go to file/function Console Terminal x Background Jobs \mathbb{R} R4.2.1 \cdot ~/ \otimes R version 4.2.1 (2022-06-23 ucrt) -- "Funny-Looking Kid" Copyright (c) 2022 The R Foundation for Statistical Computing Platform: x86_64-w64-mingw32/x64 (64-bit) R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. $>$.

RStudio Quick Demo

- Console- calculator, create variable
- Environment
- Files
- Plots
- Help
- Script

R Markdown

- install.packages("rmarkdown")
- install.packages("knitr")
- Download HW 1 and open in RStudio
- R Markdown tutorial

• Subscripts and superscripts: to get Y_i^a inline use Y_i^a *il*^{\land} {a}\$ *i*

https://www.rforecology.com/post/how-to-use-rmarkdown-part-one/

Questions

- Homework Check-in
- R/RStudio